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Abstract

Whole-exome sequencing (WES) can identify causative mutations in hereditary diseases.

However, WES data might have a large candidate variant list, including false positives.

Moreover, in families, it is more difficult to select disease-associated variants because many

variants are shared among members. To reduce false positives and extract accurate candi-

dates, we used a multilocus variant instead of a single-locus variant (SNV). We set up a spe-

cific window to analyze the multilocus variant and devised a sliding-window approach to

observe all variants. We developed the gene selection tool (GST) based on proportion tests

for linkage analysis using WES data. This tool is R program coded and has high sensitivity.

We tested our code to find the gene for hereditary spastic paraplegia using SNVs from a

specific family and identified the gene known to cause the disease in a significant gene list.

The list identified other genes that might be associated with the disease.

Introduction

With the development of next-generation sequencing (NGS), a large amount of genetic infor-

mation can be obtained at a low cost. The progress of high-throughput sequencing has enabled

whole-exome sequencing (WES) to directly identify candidate variants, particularly in the case

of limited family members. However, for WES, the list of candidate variants can be quite large,

including false positives caused by sequencing errors. The genome-wide association study

method, which compares data with reference data, is predominantly applied; however, such

data for family-specific diseases remain unavailable [1].

Classically, linkage analysis has been used to analyze family-specific diseases. Using the con-

cept of crossover and recombination, the allele combination transmitted to the offspring can

be identified, and the likelihood ratio test statistic, LOD, which uses siblings’ and parents’
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genomic information, can be calculated [2–4]. For more detailed analysis, various models such

as maximum LOD (MLOD), maximum non-parametric linkage score (MNPL), maximum

heterogeneity LOD (MHLOD), maximum Kong and Cox linear extension (MKC(lin)) of NPL,

and maximum Kong and Cox exponential extension (MKC(exp)) of NPL based on LOD have

been developed [5,6]. Generally, families share similar genomic data; therefore, it is difficult to

find a specific gene of interest because many candidates are selected. It is more difficult to find

the gene for a particular disease affecting fewer family members [5,7,8].

In linkage analysis, researchers look for genes that are passed on to the next generation

without crossover, and they are interested in the recombination fraction between two loci. To

this end, data from siblings or parents are used. It is difficult to calculate the recombination

fraction when complete family information is not available.

The SNVs of small families are generally analyzed by the multilocus linkage test, which is

more powerful than the single-locus [9]. Therefore, we propose a method to compare the

SNVs of each family member at a specific locus and quantify it, and to increase the SNV infor-

mation of a small family using the sliding-window method to determine whether the family

has a specific disease. The SNV pattern for each position was digitized to simplify the calcula-

tion, and it was converted to R code, enabling fast calculation of large SNV data. Therefore,

this approach enables quick analysis even in a low-end environment.

System and method

Using the SNV pattern, we aimed at finding genes causing rare diseases in certain families. We

grabbed the window range to see the effect of the SNVs, and slid it by one position to see its

effect continuously. We devise the gene selection tool (GST) in R based on this concept. The

GST procedure is combined in two steps, as follows:

Step 1: Calculation of the SNV pattern frequency

Let S be the disease state of a family member. S = 0 is set as a normal person, S = 1 patient, and

the j—th SNV of the v—th family member is set as SNVjv(S). REFj is the j–th reference, where

j = 1,2,. . .,J, and v = 1,2,. . .,V. J is total number of SNVs, and V is the total number of family

members. To calculate the SNV pattern frequency, family data might be handled according to

two conditions.

Condition 1. All SNV information of both parents is available. If parent SNV informa-

tion is available, we set the father with v = 1 and mother with v = 2. An indicator function is

classified according to the disease state of an offspring as follows:

IðSNVjvð0ÞÞ ¼
0; j REFj ¼ SNVjv¼1;2ð0Þ ¼ SNVjv6¼1;2ð0Þ 6¼ SNVjv¼1;2ð1Þ

1; jOtherwise

(

IðSNVjvð1ÞÞ ¼
0; j REFj ¼ SNVjv¼1;2ð0Þ 6¼ SNVjv 6¼1;2ð1Þ ¼ SNVjv¼1;2ð1Þ

1; jOtherwise

(

Where v = 3,. . .,V.

Genotype is considered when calculating the SNV pattern. In this same disease state, the

value of the indicated function is zero, and we are interested in this position.

Let LFj. be the whole family’s j—th SNV pattern frequency. Then, the equation is as follows:

LFj. = ∑v = 3,. . .,V I(SNVjv), 0� LFj.� C = V-2, where C is the number of offspring.

Condition 2. SNV information of only one parent is available, or no SNV information is

available for either parent. Under condition 2, all family members are regarded as offspring.
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Of course, it is desirable to distinguish between the presence and absence of SNV information

of a parent. In the end, however, the result of the calculation is the same. This is because the

conditions of SNV pattern frequency are the same, so there is no difference between the two

results in step 2. The SNV pattern should be calculated on the assumption that the patient dif-

fers from the reference, and a normal person is the same as the reference. Based on this, we

can derive an indicator function of a normal person and patient as follows:

IðSNVjvð0ÞÞ ¼
0; j REFj ¼ SNVjvð0Þ

1; jOtherwise

(

IðSNVjvð1ÞÞ ¼

0; j REFj 6¼ MSNVjðS ¼ 1Þ ¼ SNVjvð1Þ

0:5; j REFj 6¼ MSNVjðS ¼ 1Þ 6¼ SNVjvð1Þ

1; j Otherwise

8
><

>:

Where MSNVj(S = 1) is the most common pattern in a patient’s SNV at the j—th position and

v = 1,. . .,eV645V.

Finally, the whole family’s j—th SNV pattern frequency LFj. is as follows: LFj. = ∑v = 1,. . .,V I
(SNVjv), 0� LFj.�.V,. . .,V ollow is the number of offspring. When patients and normal people

are well distinguished in the pattern of the j—th SNVs, LFj. would be close to zero. Therefore,

GST use the window method to ascertain where the LFj. pattern frequency is close to zero.

This is explained in more detail in step 2.

Step 2: Calculation of the score

The window with n SNV markers before and after the i—th SNV is designated as ℶ(i,n) = i-n,

i-n+1,. . .,i-1,i, i+1,. . .,i+n-1,i+n, where i = n+1,n+2,. . .,U-n-1. The v—th family member’s j—
th central SNV pattern proportion in the window is defined as PRjv = ∑j2ℶ(i,n)I(SNVjv)/(2n+1),

and the probability of the whole family’s j—th central SNV pattern proportion is defined as

PRj. = ∑j2ℶ(i,n)LFj./C(2n+1), j = n+1,n+2,. . .,U-n-2,U-n-1. To find the significant SNV, we

decided to use a one-tailed proportion test of PRj. under the null hypothesis PRj.�0.5 at a sig-

nificance level α = 0.05 for each chromosome. Here, GST have to find a gene that leads to the

rejection of the null hypothesis. Because of the similarity of the SNV pattern in the same dis-

ease state, the PRj. approaches zero. To see these patterns in succession, GST slid from the win-

dow at the (n+1)–th SNV to the (U-N-1)–th SNV. The locus of SNVs within the window also

plays an important role. Despite sharing similar pattern frequencies with other windows, if the

SNVs in a window are positioned closer to each other, the results obtained will be more distin-

guished. The weight system was selected to account for such variations in distribution of the

loci. Hence, we chose the weight system. Let wj(n,t) = {L(SNVmax(j2ℶ(i,n)).)-L(SNVmin(j2ℶ(i,n)).)}/
t, where L(SNVj.) is the locus at SNVj. and t is the tuning parameter measured in 1 mega base

pairs (Mb). Let f(PRj.) and wj (n,t) be the p-values of PRj. and weight value in the window,

respectively. Finally, the j—th SNV’s score is

Scorej ¼ � logðwjðn; tÞ � f ðPRjÞÞ;

where j 2 ℶ(i, n).

At the significance level α = 0.05, GST selected SNVs with Scorej greater than—log(0.05) =

2.996 and j—th SNV pattern frequency LFj. = 0. Selected SNVs have a 95% probability of being

a variant. Among them, the SNV present at the gene position located in the coding DNA

sequence (CDS) or splice site was finally selected. Finally, the gene name at the locus of the

selected SNV was provided with the value of the score, description and phenotype
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information. In addition, scores of SIFT and PolyPhen-2 are presented together as a result.

Here, the results are placed above the gene with the phenotype information, and the gene with

no information is placed down. GST program coded have been provided in the S1 File (GST

Code).

Window size

Generally, there is no fixed method for determining the window size in the sliding-window

method. Since the method we propose is based on a one-tailed proportion test, we determined

the window size by applying the method of determining the sample size in the proportion test.

Assuming that the LFj. in the window is a sample, it can be substituted into the equation that

determines the existing sample size, as follows:

n ¼ ðððz0:05 � 0:5Þ
2
=ðC � E2ÞÞ � 1Þ=2

where z0.05 = 1.645 is the critical value of the normal distribution, and E = 0.05 is the margin of

error. The above equation can be used to determine the appropriate window size without sim-

ulation. However, the window size n is constant. If the window size n is not a constant, it is

rounded off to a constant value. It is included in the R code and is automatically calculated

according to the number of families.

Implementation

We analyzed the actual data to see whether the GST can identify genes affecting a rare disease.

We used a family tree of two sisters with hereditary spastic paraplegia, a rare disease. The dis-

ease indicates progressive spasticity and contraction in the lower limbs. Details of the family

have been provided in the S1 Fig. In this family, clinical trials have already been completed,

and the SPAST gene has been revealed as a significant causative gene. We executed the GST

with these data to determine whether SPAST was selected as a statistically significant candidate

gene with the methods proposed by us. The window size n was decided as 19 according to the

formula for determining the window size. The above data analysis took about 15 min when

run as R code. It requires R version 3.3.3 and has been successfully tested on Windows 7 with

24 GB RAM.

Table 1 and Fig 1 shows the results of the analysis, with 14 significant candidate genes. The

overall result of the description, phenotype, and score of SIFT and PolyPhen-2 appear in the

S2 File (GST result). Among them, SPAST, which was found through clinical experiments, was

selected. The SPAST gene is a member of the ATPases associated with a variety of cellular

activities (AAA) protein family, which share an ATPase domain. They are involved in a variety

of cellular processes including membrane trafficking, intracellular motility, organelle biogene-

sis, protein folding, and proteolysis. Mutation associated with SPAST is considered to be the

cause of autosomal dominant paroxysmal paralysis 4. In addition, the VAMP1 gene was

selected as well, which is also known to be a gene responsible for hereditary spastic ataxia dis-

ease, similar to hereditary spastic paraplegia. We compared the result of GST with the Variant

Annotation, Analysis & Search Tool (VAAST). Only one SPAST gene was selected when using

the VAAST. Both methods found SPAST gene. The detailed result of VAAST is in the S2 File

(VAAST result). The difference in the presence of the remaining genes is due to algorithmic

differences. VAAST uses an algorithm based on 1000 genome database. GST is only an algo-

rithm to find family-specific genes. Here, the high score of GST has two meanings. First,

because of family data, there may be a family-specific gene that appears similar to another

gene. Second, it may be an important disease-related gene. Both scenarios have important
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implications for a disease-affected family. Therefore, it would be desirable to conduct further

studies based on the list of genes provided by the GST.

Conclusions

Linkage analysis is re-emerging as an extremely useful method in WES data analysis, particu-

larly for the identification of causal rare variants in inherited disorders. Identification of candi-

date variants requires sifting through a large number of variants, including false positives

generated by sequencing errors. Accordingly, we proposed a systematic approach to select

causative genes through linkage analysis of variants extracted from WES data. In the case of

Table 1. A list of significant genes deduced by GST analysis.

Rank Chromosome Locus Gene Score

1 chr12 6575044 VAMP1 20.610176

2 chr5 131705949 SLC22A5 15.517678

3 chr1 13183015 HNRNPCL2 13.602401

4 chr12 6562285 TAPBPL 10.389608

5 chr2 32341282 SPAST 8.452735

6 chr19 56283297 RFPL4AL1 7.497583

7 chr2 132236963 TUBA3D 5.867672

8 chr7 100638484 MUC12 5.788482

9 chr12 50749294 FAM186A 5.750429

10 chr12 113319600 RPH3A 4.951603

11 chr1 248084909 OR2T8 4.101806

12 chr13 25671700 PABPC3 4.087220

13 chr2 10059844 TAF1B 3.596389

14 chr15 23261850 GOLGA8IP 3.281563

https://doi.org/10.1371/journal.pone.0185514.t001

Fig 1. A plot of the significant gene list of all chromosomes except X and Y chromosomes. To distinguish the chromosomes,

they are expressed in red and blue. The candidate genes of Table 1 are represented by gene names and their trimmed score values.

Details of the trimmed score option have been provided in the S1 File (GST User guide).

https://doi.org/10.1371/journal.pone.0185514.g001
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rare diseases, the amount of information is particularly insufficient in the case of small fami-

lies. We quantified the multilocus SNV pattern in the window to facilitate the calculation, and

the amount of information was found to be sufficient. Moreover, we applied the sliding-win-

dow algorithm to analyze all possible SNVs and observe the distribution of results from each

locus. Ultimately, the final score was obtained by weighting the results obtained from the slid-

ing window using the SNV locus. If the score is higher than the defined boundary and the

SNV pattern of the family is divided into patients and controls, and concurrently, the central

SNV’s position of the window is located in the CDS or splice site, the result is presented as a

significant candidate. We confirmed that our method is reliable and time efficient by using

actual clinical data of rare diseases. We expect that the GST will be able to analyze SNVs of

small families having rare diseases. In the future, we plan to further improve the performance

of our GST to more accurately reduce the list of candidate genes that affect certain rare

diseases.

Supporting information

S1 Fig. A pedigree of simulation data. The person whose back-ground color is expressed in

black is the patient, and the person expressed in white is the normal person. The person repre-

sented by the dotted line has no data.

(TIF)

S1 File. R file to implement the GST. It is a R file that contains R code, sample data and user

guide.

(ZIP)

S2 File. Result file to implement the GST and VAAST. It is a excel file that contains results

of GST and VAAST.

(ZIP)
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