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Abstract

Background: DNA microarrays offer motivation and hope for the simultaneous study of variations in multiple
genes. Gene expression is a temporal process that allows variations in expression levels with a characterized gene
function over a period of time. Temporal gene expression curves can be treated as functional data since they are
considered as independent realizations of a stochastic process. This process requires appropriate models to identify
patterns of gene functions. The partitioning of the functional data can find homogeneous subgroups of entities for
the massive genes within the inherent biological networks. Therefor it can be a useful technique for the analysis of
time-course gene expression data. We propose a new self-consistent partitioning method of functional coefficients
for individual expression profiles based on the orthonormal basis system.

Results: A principal points based functional partitioning method is proposed for time-course gene expression data.
The method explores the relationship between genes using Legendre coefficients as principal points to extract the
features of gene functions. Our proposed method provides high connectivity in connectedness after clustering for
simulated data and finds a significant subsets of genes with the increased connectivity. Our approach has
comparative advantages that fewer coefficients are used from the functional data and self-consistency of principal
points for partitioning. As real data applications, we are able to find partitioned genes through the gene expressions
found in budding yeast data and Escherichia coli data.

Conclusions: The proposed method benefitted from the use of principal points, dimension reduction, and choice of
orthogonal basis system as well as provides appropriately connected genes in the resulting subsets. We illustrate our
method by applying with each set of cell-cycle-regulated time-course yeast genes and E. coli genes. The proposed
method is able to identify highly connected genes and to explore the complex dynamics of biological systems in
functional genomics.

Keywords: Fourier coefficients, Legendre polynomials, Escherichia coli Microarray expression data, K-means clustering,
Principal points, Silhouette, Yeast cell-cycle data

Background
Discovering which genes are functioning and how they
express their changes at each time is a necessary and
challenging problem in understanding cell functioning
[10]. The large number of genes in biological networks
makes it complicated to analyze to understand their
dynamics. The mathematical and statistical modelling
of these dynamics, based on the gene expression data,
has become an intensive and creative research area in
bioinformatics.

Statistical models can find genes with similar expres-
sion profiles whose functions might be related through
statistics or biology. Our approach has the assumption
that specific curve form exists for each gene’s trajectory
and for each partition of these gene curves.
The observations of gene expressions are curves mea-

sured according to time on each gene. We can then call
the observed lines of genes functional data because an
observed intensity is recorded at each time point on a
line segment. Functional data analysis is possibly consid-
ered a suitable method to model these gene curves [53].
Clustering algorithms are utilized to find homogeneous

subgroups of gene data with both supervised or unsuper-
vised [1]. For functional data, clustering algorithms based
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on the functional structure are also useful to find repre-
sentative curves in each partition.
To obtain more knowledge about biological pathways

and functions, classifying genes into characterized func-
tional groups is a first step. Many methods of analysis,
such as hierarchical clustering [34], K-means clustering
[48, 52], correlation analysis [22, 24] and support vector
machines (SVM) [6] classification, can be used to classify
temporal gene profiles. Model-based clustering with finite
mixture [29] was done based on probabilistic models
[4, 13, 20, 28, 54]. Recently time-course gene expres-
sion data is often clustered in the relation between
successive time points [7, 51, 55]. Yeast gene network is
investigated for possible functional relations [31]. Fou-
rier transformation is also incorporated in clustering
and compared with Gaussian process regression (GPR)
[21]. We use the word partitioning instead of clustering
since we use a principal points partitioning technique.
After partitioning, the subsets are often but not always
normally disjoint.
In this paper, we use Legendre orthogonal polynomial

system and principal points to obtain functional parti-
tions. Analysis can be accomplished through extracting
representative coefficients via data dimension reduction
and finding principal points. Connectedness and silhou-
ette values are computed for partition validity measure.
An efficient way to deal with such gene data is to in-
corporate the functional data structure and to use a par-
titioning technique.
As a smooth stochastic functional process, the observed

gene expression profiles have the covariance function
which can be expressed with smooth orthogonal eigen-
functions based on functional principal components. The
random part of Karhunen-Loeve representation of the ob-
served sample paths serves as a statistical approximation
of the random process.
Abraham et al. [1] proposed a partitioning procedure of

functional data by B-splines. Kurata and Tang [23] investi-
gated the properties of 2-principal points with the data
from spherically symmetric distributions. Tarpey et al. [44]
compared a growth mixture modeling and optimal parti-
tioning with the principal points for longitudinal clinical
trial data. Their simulation results indicated that the opti-
mal partitioning worked better than the mixture model in
a squared error, even if there is a covariate. Tarpey et al.
[41] used the self-consistent partitioning with the func-
tional data.
The k-principal points are defined as a set of k-points

that minimizes the sum of expected squared distances
from every point to the nearest point of the set. These k-
principal points are mathematically equivalent to centers
of gravity obtained by K-means clustering. Tarpey [42, 43]
also extended and applied the principal points idea for
functional data analysis (FDA).

In this paper, we handle the relation between cluster-
ing functional data and partitioning functional principal
points. We propose to use self-consistent partitioning
techniques for gene grouping based on curvature pro-
files as FDA. Some advantages in the use of FDA tech-
niques for partitioning are:

(i) Tarpey [41] showed that partitioning random
functions can be replaced by partitioning the
coefficients of the orthonormal basis functions
in finite Euclidean space if its approximation can
be done based on a finite number of orthonormal
basis functions. The orthonormal polynomials are
estimated and partitioned ([39, 42–44]). Tarpey
[41] proved that principal points of a Gaussian
random function can be found in a finite
dimensional subspace spanned by eigen-functions
of the covariance kernel associated with the
distribution.

(ii)For functional data, clustering algorithms are
useful to find representative curves under the
different modes of variation. Representative curves
from a data set that can be found using principal
points from a large collection of functional data
curves [11, 37].

(iii)Principal points are special cases of self-consistent
points. A set of k-points are self-consistent for a
distribution if each of the points is the conditional
mean of the distribution over its respective Voronoi
region. K-means algorithm converges to a set of k
self-consistent points of the empirical distribution
if a set of k-points are self-consistent.

Partitioning based on interactions of genes is studied
for the structure of genetic networks. In addition, stat-
istical test and association rule approach represents an-
other new strategy. Recently a statistical biclustering
technique was proposed with applying on microarray
data (gene expression as well as methylation) [25–27].
Consensus clustering is proposed via checking inter-
method of clustering [40]. Recursive partition is also
worked with classification trees to improve the preci-
sion of classification [56, 57]. To find the combinatorial
marker [2, 3] integrated multiple data sources are sur-
veyed in a comparative study. For yeast data a func-
tional network partitioning was done [8].
Numerous research results on clustering microarray

data which are mostly grouping common expression pat-
terns. There are a few cases for partitioning genes with
time-course regarded as functional data. In this research,
we propose a new method for self-consistent partition-
ing of genes with functional gene expression data. The
proposed method consists of two main steps. The first
step is to represent each gene profile by functional
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polynomial representation. The second is to find princi-
pal points and appropriate partitions. We applied our
method to simulated data and analyzed yeast gene
microarray data and Escherichia coli data that resulted
in partitioning with interpretable genes.

Methods
Model
Consider the gene expression data curve Yi(t) as a
stochastic process at time t. Let fi(t) denote the
expected expression at time t for the ith subject. The
model with the functional data representation is

Y i tð Þ ¼ f i tð Þ þ εi tð Þ; i ¼ 1; 2;⋯; n ð1Þ
with

f i tð Þ ¼ βi0ξe0 tð Þ þ βi1ξe1 tð Þ þ βi2ξe2 tð Þ þ βi3ξe3 tð Þ
þ βi4ξe4 tð Þ

where each ξ j tð Þ corresponds to the normalized ξj(t).
For example, Legendre polynomials, as an orthonormal
polynomial system, are expressed using Rodrigues’ for-
mula as

ξ j tð Þ ¼ 1

2jj!

dj

dtj
t2−1
� �j

:

The first few Legendre polynomials are

ξe0 tð Þ ¼ 1; ξe1 tð Þ ¼ t; ξe2 tð Þ ¼ 1
2

3t2−1
� �

;

ξe3 tð Þ ¼ 1
2

5t3−3t
� �

; ξe4 tð Þ ¼ 1
8

35t4−30t2 þ 3
� �

;

ξe5 tð Þ ¼ 1
8

63t5−70t3 þ 15t
� �

; ξe6 tð Þ ¼ 1
16

231t6−315t5 þ 105t2−5
� �

;

and εi(t) is an error function with mean 0, independent
of each other term in the model. For each gene βi0, βi1,
βi2, βi3, βi4 are regression coefficients based on Legendre
polynomials. In the microarray experiment Yi(t) is the
log gene expression of gene i at time t.
The curves given by the orthogonal polynomials are

characterized by five coefficients, four of which are used
to classify subjects. First, the coefficient β1 in (1) gives the
overall trend in the outcome profile, then the derivative
fi
′(t) gives the rate of change in the expected outcome at
time t. Parameter β2 is the coefficient of the quadratic
polynomial providing a measure of concavity of the out-
come curve. Parameter β3 as the coefficient of the cubic
polynomial is a measure of curvilinearity and β4 as the
coefficient of the quartic polynomial gives a measure of
concavity of the outcome curve. The estimated polyno-
mial coefficients have information about the underlying
functional patterns and enable the automatic estimation
of pattern functions.

Partitioning functional gene curves
Self-consistent partitions
Principal points and self-consistent points can be used
for partitioning a homogeneous distribution. Principal
points can be defined as a subset means for theoretical
distributions.
For a set W = {y1, y2,⋯, yk} the k distinct non-random

functions in a function space L2, define

Dj ¼ fy∈L2 : jjyj−yjj2 < jjyi−yjj2; i≠jg
as a domain of attraction Dj of yj that consists of all y ∈
Rp. The sets of Dj are often referred to the Voronoi
neighborhoods of yj. The domains of attraction induce a
partition as Dj via the pre-images Bj such as ∪Bj = Rp

where the boundaries have a probability of zero.
The set of optimal k-points is expressed in terms of

mean squared error (MSE). A set of k points ξ1, ξ2,⋯, ξk
are principal points [8] for a random vector X ∈ Rp if

E min
j¼1;⋯;k

jjX−ξjjj2
� �

≤E min
j¼1;⋯;k

jjX−yjjj2
� �

for every set of k points y1, y2,⋯, yk. The optimal one-
point representation of a distribution is the mean, which
is corresponding to k = 1 principal point. For k > 1 princi-
pal points are a generalization of the mean from one to
several points optimally representing the distribution. A
nonparametric estimate for the principal points is ob-
tained via K-means algorithm. Thus the k-points are
mathematically equivalent to centers of gravity by K-
means clustering.
The concept of principal points can be extended to

functional data clustering. Tarpey [41–43] proved that
principal points of a Gaussian random function can be
found in a finite dimensional subspace spanned by eigen-
functions of a covariance kernel associated with the
distribution.
We derive functional principal points of orthonormal

polynomial random functions based on the transformation.
A set {ξ1, ξ2,⋯, ξk} is self-consistent for a random

vector X if

E Xð jX∈DjÞ ¼ ξj; j ¼ 1;⋯; k:

A set of k-points is self-consistent if each of the
points is a conditional mean in the respective domain
of attraction. Principal points are self-consistent [8],
but the converse is not necessarily true. Tarpey and
Kinateder [46, 47] proved that self- consistent points
of elliptical distributions exist only in a principal
component subspace. Tarpey [41] proved the principal
subspace theorem as follows. Suppose X is p-variate
elliptical with E(X) = 0 and Cov(X) = Σ, then v, the
subspace spanned by a self-consistent set of points is
spanned by an eigenvector set of Σ. Principal points

Kim and Kim BMC Bioinformatics  (2017) 18:450 Page 3 of 17



find the optimal partitions of theoretical distributions.
It would be interesting to study principal points of
theoretical distributions such as finite mixtures, for
which cluster analysis is meant to work.
Tarpey [41] showed that principal points form sym-

metric patterns for the multivariate normal and other
symmetric multivariate distributions. For symmetric,
multivariate distributions several different sets of self-
consistent points may exist and the optimal symmetric
pattern of self-consistent points depends on the under-
lying covariance structure.
Cluster analysis is related to finding homogeneous

subgroups in a mixture of distributions, it would be ap-
propriate to give optimal cluster means to the principal
points inspired by [24]. Cluster analysis methods are
considered as purely data-oriented without a statistical
model in the background in order to pragmatically find
optimal partitions of observed data. It would be intri-
guing to further study principal points of theoretical dis-
tributions that reflect group structure, such as finite
mixtures, due to their ability to find optimal partitions
of theoretical distributions. Principal points may be used
to define the best k-point approximations to continuous
distributions.
Estimators of the principal points [11] can be ob-

tained as cluster means form the K-means algorithm.
Tarpey and Kinateder [46] examined the K-means al-
gorithm for functional data and provided results on
principal points for random functions. They proved
that principal points of a Gaussian random function
can be found in a finite dimensional subspace
spanned by the eigen-functions of covariance kernel
associated with distributions that can be extended to
non-Gaussian random functions.
The self-consistent curves inspired by Hastie and Stuetzle

[15] can be generalized to provide a unified framework
for principal components, principal curves and princi-
pal points. A principal component analysis is proposed
to identify important modes of variation among curves
[17] with principal component scores demonstrating
the form and extending variations.
Clustering algorithms are often used to find homogenous

subgroups of entities depicted in a set of data. For func-
tional data, clustering algorithms are also useful to find
representative curves that correspond to different models
of variation. Early work on the problem of identifying rep-
resentative curves from a data set can be found based on
the principal points [12, 17]. The concept of principal
points to functional principal point was extended; subse-
quently, functional principal points of polynomial random
functions were derived using orthonormal basis trans-
formation [36].
Suppose {f1, f2,⋯, fn} is a random sample of polyno-

mial functions of the form (1) where the coefficient

vector β = (β0, β1, β2, β3, β4)
′ follows 5-variate normal

distribution. The L4 version of the K-means algorithm
can be run on the functions fi, i = 1,⋯, n to estimate
principal points. The center of K-means clustering for
the estimated coefficient vectors is based on the ortho-
normal transformation that constitutes the functional
principal point; therefore, we consider K-means clus-
tering for the Legendre polynomial coefficient vectors
and for the Fourier coefficient vectors after Fourier
transformation.
The K-means algorithm [47] provides that the Gaussian-

based estimates coincide theoretically and the subspace
containing a set of principal points must be spanned by
the eigen-functions of the covariance matrix. Clustering
functional data using an L2 metric on function space
can be done by clustering regression coefficients
linearly transformed based on the orthogonal system
[45]. Clustering after transformation and nonparametric
smoothing is suggested [36] without assuming inde-
pendence between curves.
Estimated coefficient vectors can be used to obtain the

principal points for partitioning. The subspace can be
spanned by eigen-functions of the covariance kernel
C(s, t) for β because the estimated coefficient vector can
be a Gaussian random function. Eigenvalues and eigen-
vectors are then obtained from the covariance matrix of
the estimated coefficients.

Finding the number of partitions
One difficult problem in clustering analysis is to identify
the appropriate number of groups for the dataset. As a
nonparametric way [39] for choosing the number of
clusters is based on distortion that measures the average
between each observation and its closed cluster center.
The minimum achievable distortion associated with fit-
ting K centers to the data is

dK ¼ 1
p

min
C1;⋯;

CK

E x−Cxð Þ0 Γ−1 x−Cxð Þ
h i

where Γ is the covariance matrix. If Γ is the identity
matrix, distortion is a mean squared error.
The sample Legendre coefficients and the sample Fourier

coefficients approximately follow the multivariate normal
distribution; therefore, Gaussian mixture model-based
clustering can be considered in addition to the number
of partitions that can be chosen as a maximizer of the
Bayesian Information Criterion (BIC).

Choice of Legendre coefficients
xTo determine the value of J, the number of polyno-
mials, we can consider several J values and BIC, assum-
ing that each partition covariance has the same elliptical
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volume and shape. We surmise that a true optimal J
value for all the genes may not exist because the known
optimal J values are various for each gene function. Our
experiments consider the feasible numbers of partitions
and J values for their optimality with the corresponding
dataset.

Partition validation
The determination of the number of subsets (clusters) is
an intriguing problem in unsupervised classification. To
assess the resulting cluster quality various cluster validity
indices are used. We consider silhouette measure pro-
posed by [32] and connectivity in [14].

Table 1 Comparison of partitioning with principal points for original data, Legendre polynomial coefficients and Fourier coefficients
in 500 repetitions and m = 20 repeated design points with low noise σ = 0.5 and high noise σ = 1.5

K = 6 subsets σ = 0.5 σ = 1.5

Number of coeff Mean
Silhouette

Connectivity Mean
Silhouette

Connectivity

J = 3 Original data: y 0.114 102.05 0.076 105.54

Legendre coeff: LPC 0.531 25.036 0.511 23.932

Fourier coeff: FC 0.270 61.628 0.235 63.621

J = 4 Original data: y 0.118 102.691 0.082 105.497

Legendre coef: LPC 0.534 22.699 0.539 22.614

Fourier coeff: FC 0.235 68.572 0.224 73.308

J = 5 Original data: y 0.116 101.743 0.081 105.343

Legendre coeff: LPC 0.547 22.526 0.539 22.846

Fourier coeff: FC 0.212 74.110 0.198 77.572

Fig. 1 Flowchart of the whole methodology of the proposed partitioning
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The silhouette width for the ith sample in the jth clus-
ter is defined as:

s ið Þ ¼ b ið Þ−a ið Þ
max a ið Þ; b ið Þf g

where a(i) is the average distance between the ith sam-
ple and all other samples included in the jth cluster, b(i)
is the minimum average distance between the ith sample
and all the samples clustered in kth cluster for k ≠ j. A
point is regarded as well clustered if s(i) is large. The sil-
houette width is an internal cluster validity index used
when true class labels are unknown. With a partitioning
solution C, the silhouette width judges the quality and
determines the proper number of partitions within a
dataset. The overall average silhouette value can be an
effective validity index for any partition. Choosing the
optimal number of clusters/partitions is proposed as the
value maximizing the average s(i) over the data set [19].
Connectivity was suggested in [14] as a clustering or

partitioning validity measure such as

Conn Cð Þ ¼
Xn

i¼1

Xp

j¼1
xi;nni jð Þ

where C = { C1,⋯,CN} are clusters, and p is the number
of variables contributing to the connectivity measure.
Define nni(j) is the jth nearest neighbor of observation i,
and let xi;nni jð Þ be zero if i and nni(j) are in the same
cluster and 1/j otherwise.
The connectivity assesses how well a given partitioning

agrees with the concept of connectedness. This evaluates
to what degree a partitioning observes local densities
and groups genes (data items) together within their
nearest neighbor in the data space based on violation
counts of nearest neighbor relationships. The connectiv-
ity has a value between zero and ∞ that should be mini-
mized for the best results. Dunn’s index [9] is another
type of connectedness measure between clusters.

Stability measures can be computed after partitioning.
Average Distance (AD) computes the average distance
between genes placed in the same cluster by clustering
based on the full data and clustering based on the data
with a single column removed. AD has a value between
zero and ∞; therefore, smaller values are preferred.
Figure of Merit (FOM) measures the average intra-

cluster variance of the genes in the deleted column, where
clustering is based on remaining (undeleted) samples.
FOM estimates the mean error using predictions based on
cluster averages. The final FOM score is averaged over all
the removed columns with a value between zero and ∞.
FOM with smaller values means better performance.

Results and discussion
Worked example
We consider flexible functional patterns of data since
real gene expression functions are various with noise.
Nonlinear curves are generated according to the regres-
sion model

Fig. 2 GAP statistics from K = 4 to K = 8

Table 2 Principal points partitioning results in K = 5 subsets
based on J the number Legendre polynomial coefficients and
Fourier coefficients with yeast data

LPCa FCb

Number of LPC
Number of FC

Average
Silhouette

Average
Silhouette

J = 2 0.485 0.2256

J = 3 0.494 0.1954

J = 4 0.511 0.2118

J = 5 0.520 0.1417

J = 6 0.516 0.1298

J = 7 0.500 0.1394
aLPC: Legendre polynomial coefficients
bFC: Fourier coefficients
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Y iu ¼ f i tuð Þ þ σεiu

for i = 1, 2,⋯, 6, u = 1, 2,⋯,m, and tu = u/m. The under-
lying regression functions for f are:

f 1 tð Þ ¼ 0

f 2 tð Þ ¼ 5−5t
2

� �
∧

5t−2
3

� �2

þ sin
5πt
2

� � !

f 3 tð Þ ¼ 20 t−0:1ð Þ t−0:5ð Þ t−0:7ð Þ
f 4 tð Þ ¼ −2t þ sin 5πt=2ð Þ
f 5 tð Þ ¼ 2 cos 2πtð Þ
f 6 tð Þ ¼ 2 t−0:3j j:

The simulated data consist of 1000 curves with 6
different underlying functions. The data set has 500
curves of f1 and 100 curves of each of f2,⋯, f6 to reflect
certain aspect of gene expression data. Noise is imitated

by adding random values from a normal distribution.
Two noise levels are considered as low noise σ = 0.5 and
high noise σ = 1.5. The number of time points is set to
m = 20.
The advantages of the proposed method are evaluated

by simulations. The number of subsets are known as
K = 6. Table 1 shows connectivity and silhouette values
after partitioning, which are better for 6 subsets with
J = 3, 4, 5 coefficients in Gaussian-based principal points
partitioning. The mean silhouette values and connectivity
vary little according to J values. The number of subsets
can be determined with modified GAP statistics [49]. The
simulation results illustrate that the principal points via
Legendre polynomial coefficients have favorable statistical
properties in connectedness and can be used in time-
course gene data. Figure 1 provides the flowchart of our
proposed partitioning procedure.
Evaluation for a clustering method can be done on

theoretical grounds by internal or external validation, or
both [14, 31]. Likewise, silhouette width and connectivity

Table 3 Principal points partitioning results with original data, Legendre polynomial coefficients and Fourier coefficients in K = 5
subsets with yeast data

K = 5 Components

Y (m = 18) LPC (J = 4) FC (J = 4)

Number of genes in 5 subsets 1232 743,484,147 1883 120,128,914 1241 2086 2625 495 40 1160 169

Average Silhouette 0.095 0.511 0.2118

Connectivity 2273.658 61.53 1018.696

Fig. 3 Silhouette values in 5 subsets with principal points partitioning with J = 4 Legendre polynomial coefficients for yeast data
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measure is considered for tightness in regards to genes
in partitions. The evaluation of partitioning algorithms
for gene data cannot be conducted by similar measures,
but only by internal or external validation measures. The
connectivity of genes in each partition can be regarded
as an association of genes.

Application to partitioning with yeast cell cycle microarray
expression data
The yeast cell-cycle data set [38] includes more than 6000
yeast genes at 18 time points measured every 7 min that
start at 0 min and end at 119 min. Temporal gene expres-
sion data (α-factor synchronized) for the yeast cell cycle

data is used for our real data analysis. A total of 4489 genes
remain after removing genes with the missing values. The
time-course yeast microarray data are functional data ob-
tained according to 18 time points for each gene [38]. Yeast
is a free living, eukaryotic and single cell and highly com-
plex organism that plays an important role for biology
research.
First, the Legendre coefficients and Fourier coefficients

are estimated. Then each set of estimated coefficients is
applied to K-means clustering and Gaussian-based princi-
pal point estimation with the estimated covariance matrix.
Figure 2 shows that the GAP statistic for original data

is maximized at k = 5. We considered from k = 4 since

Fig. 4 Loess smoothed gene score means in 5 subsets based on five Legendre polynomial coefficients of yeast data
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previous research typically provides at least 4 subsets,
even with different criterion. BIC is maximized at k = 5
for model-based clustering with the Legendre polyno-
mial coefficients under VEV (volume:variable, shape:eq-
ual, and mean:variable) condition. Therefore, we decide
the number of subsets as k = 5.
The number of Legendre polynomials J is considered

from J = 2 to J = 7 and the average silhouette value is
maximized at J = 5. The average silhouette values for
J = 4 and J = 5 is 0.511 and 0.520 which are very close.
However the mean within sum of squares (MSW) with
J = 4 is 7376 and MSW with J = 5 is 144,650. MSW with
J = 4 is less than MSW with J = 5. Consequently, the
genes within each subset are closer to its center for
J = 4. Therefore, we decide to use J = 4 Legendre poly-
nomials and one constant term with the resulting coeffi-
cients used for partitioning. Table 2 shows that J = 4
Fourier coefficients are suggested for partitioning. We
consider the same number of Fourier coefficients and
those of Legendre polynomials for the comparison of
yeast data.
Then K-means clustering is done with the time-course

original data (y), with 4 Legendre polynomial coefficients
(LPC) and one constant term, and with 4 Fourier coeffi-
cients (FC) and one constant mean term respectively. K-
means clustering with Legendre polynomials result in
five subsets with 120, 128, 914, 1241, and 2086 genes re-
spectively. The 2086 genes in Subset 5 seem to be non-
differential. Table 3 shows the partitioning results with
the validation measures such as silhouette and connect-
ivity. LPC has the best silhouette and the lowest (best)
connectivity values. Figure 3 shows means, 2.5% and
97.5% percentiles of gene scores which provides a 95%

empirical confidence interval for each subset. The graph
in the bottom right-hand corner of Fig. 3 shows the esti-
mated mean change patterns of the five subsets. Figure 4
and Fig. 5 provide the LPC partitioning information in-
cluding underlying functions and Legendre polynomial
coefficients. In Fig. 4, the expression patterns of Subset 1
and 2 are similar to those of Subset 3 and 4, respectively,
with less fluctuations. This means their relevance to cell
cycle could be similar to each other (Subset 1 and 3,
Subset 2 and 4), but they are possibly involved in differ-
ent biological activities during the cell cycle. Subset 3
and Subset 4 seem to have initial different parts and
their coefficients are reverse in sign in Fig. 5. Our pro-
posed algorithm was able to identify any subtle differ-
ences in terms of biological processes. In Table 4, most
of the GO terms in Subset 1 are mainly related to DNA
replication during the S (synthesis) phase of cell cycle,
while the terms in Subset 3 represent different biological
processes such as protein mannosylation, which is an es-
sential process for cell wall maintenance. GO terms re-
lated to cell division, including cell wall synthesis, were
in Subset 2, which is mainly activated during the M (mi-
tosis) phase of the cell cycle. Genes in Subset 4 showed
similar expression profiles with Subset 2, but their bio-
logical processes are mostly related to a protein synthe-
sis that was not represented in Subset 2. Therefore, the
genes in Subset 3 and 4 are possibly involved in the cru-
cial biological processes required during the S or M
phase of the cell cycle. The constant expression pattern
and over-represented GO terms in the subsets suggested
that these genes could be related to biological processes
such as protein transport, which is constantly activated
throughout the cell cycle.

Fig. 5 Means of Legendre polynomial coefficients in five subsets of yeast data
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Table 4 Summary of over-represented KEGG pathway terms in each subset of yeast data

Category
(Annotated / Total, %)

Term KEGG id count p-value FDR
(E-2: 10−2)

Subset 1
(36/106, 33%)

DNA replication ko03030 10 6.10E-09 2.40E-07

Mismatch repair ko03430 7 2.20E-06 4.30E-05

Cell cycle - yeast ko04111 11 1.80E-04 2.30E-03

Amino sugar and nucleotide sugar metabolism ko00520 6 4.70E-04 4.70E-03

Pyrimidine metabolism ko00240 8 6.70E-04 5.40E-03

Base excision repair ko03410 4 6.00E-03 3.90E-02

Nucleotide excision repair ko03420 5 7.30E-03 4.10E-02

Starch and sucrose metabolism ko00500 5 9.60E-03 4.70E-02

Galactose metabolism ko00052 4 1.40E-02 5.90E-02

Purine metabolism ko00230 7 1.50E-02 5.90E-02

Meiosis - yeast ko04113 7 4.90E-02 1.70E-01

Homologous recombination ko03440 3 6.10E-02 1.90E-01

Fructose and mannose metabolism ko00051 3 7.30E-02 2.10E-01

Subset 2
(14/123, 11%)

MAPK signaling pathway - yeast ko04011 6 6.00E-04 1.20E-02

Cell cycle - yeast ko04111 8 1.20E-03 1.20E-02

Meiosis - yeast ko04113 7 7.10E-03 4.90E-02

DNA replication ko03030 3 7.00E-02 3.20E-01

Subset 3
(195/821, 23%)

Metabolic pathways map01100 136 3.90E-09 3.80E-07

Biosynthesis of secondary metabolites map01110 65 1.20E-05 5.80E-04

Glycerophospholipid metabolism ko00564 14 5.50E-04 1.70E-02

Carbon metabolism ko01200 29 5.70E-04 1.40E-02

Tyrosine metabolism ko00350 7 6.10E-03 1.10E-01

Glycolysis / Gluconeogenesis ko00010 16 6.70E-03 1.00E-01

Propanoate metabolism ko00640 6 9.30E-03 1.20E-01

Fatty acid elongation ko00062 5 1.40E-02 1.50E-01

Biosynthesis of antibiotics map01130 41 1.70E-02 1.70E-01

Fatty acid metabolism ko01212 8 1.90E-02 1.70E-01

Oxidative phosphorylation ko00190 17 2.30E-02 1.80E-01

Pyruvate metabolism ko00620 11 2.70E-02 2.00E-01

Starch and sucrose metabolism ko00500 11 3.20E-02 2.10E-01

Glycosylphosphatidylinositol(GPI)-anchor biosynthesis ko00563 8 3.90E-02 2.40E-01

Mismatch repair ko03430 7 4.00E-02 2.30E-01

Phenylalanine metabolism ko00360 5 4.70E-02 2.50E-01

Biosynthesis of unsaturated fatty acids ko01040 5 4.70E-02 2.50E-01

Protein processing in endoplasmic reticulum ko04141 18 5.50E-02 2.70E-01

Arginine biosynthesis ko00220 6 6.40E-02 3.00E-01

MAPK signaling pathway - yeast ko04011 12 6.60E-02 2.90E-01

Methane metabolism ko00680 8 6.70E-02 2.90E-01

Degradation of aromatic compounds ko01220 4 7.80E-02 3.10E-01

Other types of O-glycan biosynthesis ko00514 5 8.20E-02 3.10E-01

N-Glycan biosynthesis ko00510 8 9.20E-02 3.30E-01

Fatty acid degradation ko00071 6 9.60E-02 3.30E-01
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Nonparametric estimators of principal points are given
by the subset center means (Fig. 5). Figure 6 shows the
relation between linear and quadratic Legendre polyno-
mial coefficients. Figure 7 shows the hierarchical struc-
ture of Legendre coefficients as the heatmap. Legendre
coefficients 2 and 4 as well as coefficients 1 and 3 seem
to be clustered first. Subset stability measures such as
average distance (AD) and Figure of Merit (FOM) are
computed. AD is 20.6059 and FOM is 8.15, which are
minimized with 5 subsets instead of 4 subsets; conse-
quently, 5 partitions are more stable than 4 partitions in
regards to AD and FOM.
Over-Represented Analysis (ORA) was performed with

the genes in each subset in order to explain the explain

biological relevance of the partitioned data. ORA searches
for Gene Ontology (GO) terms of a given set of genes by
evaluating the statistical significance of over-represented
functional and molecular mechanisms [5, 6]. GO is di-
vided into three separate ontologies (Cellular Component,
Molecular Function, and Biological Process) and our ORA
analysis focuses on the Biological Process of a group of
genes. In each subset, we selected the top 10 over-
represented GO terms in the smallest order of p-values
and compared them in terms of biological significance to
over-represented GO terms with the Partitioning Around
Medoids (PAM) clustering method (Fig. 8) that can be
seen in detail in the legend of the figure. Many of the
annotated GO terms, such as DNA replication in Subset 1

Table 4 Summary of over-represented KEGG pathway terms in each subset of yeast data (Continued)

Category
(Annotated / Total, %)

Term KEGG id count p-value FDR
(E-2: 10−2)

Subset 4
(191/1113, 17%)

Ribosome biogenesis in eukaryotes ko03008 33 2.40E-05 2.30E-03

RNA transport ko03013 34 2.40E-05 1.20E-03

Purine metabolism ko00230 34 5.10E-05 1.70E-03

RNA polymerase ko03020 15 2.40E-04 5.70E-03

Steroid biosynthesis ko00100 9 5.20E-03 9.50E-02

Biosynthesis of amino acids ko01230 33 1.30E-02 1.80E-01

Proteasome ko03050 13 1.40E-02 1.80E-01

Non-homologous end-joining ko03450 6 2.00E-02 2.20E-01

Pyrimidine metabolism ko00240 21 2.20E-02 2.20E-01

RNA degradation ko03018 18 3.30E-02 2.80E-01

Cysteine and methionine metabolism ko00270 12 4.30E-02 3.20E-01

Phosphatidylinositol signaling system ko04070 7 5.00E-02 3.40E-01

Biosynthesis of antibiotics map01130 49 6.00E-02 3.70E-01

Subset 5
(407/1809, 22%)

Metabolic pathways map01100 239 2.60E-05 2.70E-03

Biosynthesis of secondary metabolites map01110 113 1.90E-04 1.00E-02

Protein processing in endoplasmic reticulum ko04141 40 6.50E-04 2.20E-02

Biosynthesis of antibiotics map01130 84 1.40E-03 3.60E-02

Basal transcription factors ko03022 18 3.10E-03 6.30E-02

mRNA surveillance pathway ko03015 23 4.50E-03 7.50E-02

Endocytosis ko04144 31 9.50E-03 1.30E-01

Ubiquitin mediated proteolysis ko04120 22 1.40E-02 1.70E-01

Spliceosome ko03040 33 1.50E-02 1.70E-01

Phagosome ko04145 17 3.20E-02 2.90E-01

Biosynthesis of amino acids ko01230 46 3.40E-02 2.80E-01

Glycine, serine and threonine metabolism ko00260 15 5.00E-02 3.60E-01

Citrate cycle (TCA cycle) ko00020 15 5.00E-02 3.60E-01

Arginine and proline metabolism ko00330 11 5.20E-02 3.50E-01

Proteasome ko03050 16 5.20E-02 3.30E-01

Phenylalanine, tyrosine and tryptophan biosynthesis ko00400 9 8.50E-02 4.60E-01

Glyoxylate and dicarboxylate metabolism ko00630 12 9.80E-02 4.90E-01

Valine, leucine and isoleucine biosynthesis ko00290 7 9.90E-02 4.80E-01
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Fig. 6 Plot of linear and quadratic coefficients β i1; ; β i2ð Þ for Legendre polynomials in each subset of yeast data

Fig. 7 Heatmap of Legendre polynomial coefficients of yeast data
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and conjugation in Subset 2, are adequate to explain
the cell cycle data used. However, in Subset 3, our par-
titioning technique found four GO terms, GO:0007010,
GO:0035268, GO:0035269, and GO:0044710 were not
significantly over-represented in the PAM result. In
Subset 3, the annotations of the found terms, especially
Protein O-linked mannosylation recently reported that
the lack of this biological function crucially affects cell
morphology such as cell wall defects and cell-cell separ-
ation in S. pombe [50]. Therefore GO: 0035268, GO:
0035269, and GO:0044710 are closely related to each
other and reasonably explain the cell cycle process. In
addition, GO:0035268 and GO:0035269 can be found
as child terms by following connections from
GO:0044710 in a GO tree. The results indicate that our
partitioning approach can find functionally related
genes which are not identified by the commonly used
PAM clustering method.
With similar approach, we annotated the genes in each

subset in terms of biological pathways. KEGG is a well-
known pathway whose biological functions are manually
curated [18]. DAVID website provides KEGG informa-
tion along with various annotation tools that include
ORA [16]. Table 4 summarizes the over-represented
KEGG pathways that are statistically significant with p-

value <0.1. We drew our attention on Subset1 where the
highly significant pathway terms are involved in DNA
replication and repair processes during the cell cycle.
Sugar metabolisms are easily detected because sugars
are the basic building blocks of DNA. From these anno-
tation results, the genes in Subset 1 are closely interre-
lated in the role of DNA replication. However, 53 of 96
genes in this subset are not included for the annotation;
therefore, these 53 genes could be good candidates for
further study with a hypothesis that they are dynamically
involved in the DNA replication and repair process. Re-
cently FDA ([33, 35]) provides new tools well-suited for
discrimination and classification [30, 42].

Application to partitioning with Escherichia coli microarray
expression data
We applied our method to microarray data tracking
Escherichia coli (E. coli) transcriptional responses to re-
covering from the stationary phase. This experimental
dataset consists of log ratio intensity values for E. coli
genes measured in cDNA microarray hybridizations.
The final data set includes more than 3607 genes at 11
time points; however, 3452 genes remain after removing
genes with missing values. Time-course E. coli micro-
array data are regarded as functional data obtained

Fig. 8 Top 10 over-represented GO terms in each subset (Subset 1:Red, Subset 2:Orange, Subset 3:Blue, Subset 4:Green, and Subset 5:Purple) in
yeast data. Only Subset 3 has four over-represented GO terms. For the comparison, PAM was performed with various numbers of centers ranging
from 3 to 15. The cell is colored with dark gray or light gray if PAM found the same GO terms with ORA test
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Fig. 10 Expression patterns of genes in each subset. Red lines represent smoothed gene expression mean of E.coli microarray data

Fig. 9 Silhouette values in 4 subsets with principal points partitioning with J = 4 Legendre polynomial coefficients of E.coli data
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according to 11 time points for each gene. This dataset
is part of a study that tracks transcriptional responses to
over 30 chemical and physiological perturbations [34].
The current study took advantage of the available

information about the physiology of E. coli bacteria.
Functional and regulatory classifications for E. coli genes
are considered to evaluate transcriptional activity within
and across groups of related genes. Figure 9 provides the
silhouette profiles of the partitioning with the overall
average silhouette value at 0.51. Figure 10 shows the ex-
pression patterns of the four subsets that were deter-
mined by the proposed algorithm. Each subset has 1349,
251, 1444, and 408 genes from Subset 1 to Subset 4. The
connectivity measure is 62.68 and Dunn’s index is
0.000759 for the resulting partitions. Each subset has its
own distinctive expression pattern depicted by the
smoothed expression mean (red line). Similar to the
yeast cell cycle data results, Subset 1 and Subset 3 have
identical expression profiles to Subset 4 and Subset 2,
respectively, but with less fluctuations. The genes in
Subset 4 and Subset 1 are actively involved in recovery
processes such as protein synthesis, carbon energy me-
tabolism, cell division, and nutrient uptake; however, the
genes in Subset 2 and Subset 3 were possibly involved in
the processes that stabilize the cells after their growth
[34]. We performed gene enrichment analysis using the
DAVID website to evaluate the partitioned genes in
terms of their encoded protein keywords. Table 5 shows
the enriched keywords with p-values less than 0.01. As
expected, genes in Subset 4 are mainly involved in cell
growth; however, the genes in Subset 1 are also related
to cell growth similar to genes in Subset 4 that have
distinct cellular processes such as molecular bindings.
However, the keywords in Subset 2 and Subset 3 are
mainly related to enzymatic processes after cell growth.
For example, acetylation affects protein stability; in
addition, purine/pyrimidine biosynthesis, ligase, transfer-
ase, are all important enzymatic processes for cell
stabilization. Oxidoreductase and NADP are also respon-
sible for the electron transfer. The proposed technique
proved that it provides decisive and biologically meaning-
ful subsets of genes in time-course experiments despite
the limited biological annotations.

Conclusions
The dynamic nature of biological systems makes the in-
vestigation of temporal gene expression data important
for exploration of gene expression regulation since they
provide valuable functional information about temporal
underlying patterns. Partitioning these genes is therefore
an interesting problem in order to find gene functions in
each partition.
In this paper, we present a functional partitioning proced-

ure using principal points for temporal gene expression

Table 5 Summary of over-represented GO terms (molecular
function) in each subset of E.coli data

Subset4
(339/402, 84%)

Transposition 26 3.10E-12

Category
(Annotated / Total, %)

Term Count p-value

Subset1
(932/1320, 70%)

DNA recombination 49 8.80E-06

RNA-binding 58 2.00E-04

Transposition 31 2.60E-04

Protein biosynthesis 26 3.60E-04

Transposable element 31 3.90E-04

tRNA-binding 16 7.90E-04

DNA-binding 159 1.70E-03

tRNA processing 26 2.90E-03

Nucleotide-binding 180 2.90E-03

ATP-binding 155 2.90E-03

Cytoplasm 232 4.30E-03

Nucleotidyltransferase 23 6.90E-03

Subset2
(188/248, 75%)

Acetylation 21 6.20E-07

Purine biosynthesis 9 2.10E-06

Oxidoreductase 43 6.10E-06

Nitrate assimilation 8 6.50E-05

Metal-binding 59 2.40E-04

Ligase 15 9.20E-04

Tricarboxylic acid cycle 7 1.40E-03

Pyridoxal phosphate 11 2.20E-03

NADP 14 2.30E-03

Pyrimidine biosynthesis 5 2.90E-03

Enterobactin biosynthesis 4 6.10E-03

Transferase 48 8.80E-03

Subset3
(609/1377, 44%)

Oxidoreductase 137 5.80E-03

Iron-sulfur 58 7.40E-03

Subset4
(339/402, 84%)

Transposition 26 3.10E-12

Transposable element 26 5.20E-12

DNA recombination 29 6.30E-09

Cytoplasm 96 2.80E-06

Ribonucleoprotein 16 2.00E-04

Bacterial flagellum 9 2.90E-04

Ribosomal protein 15 5.70E-04

Transmembrane beta strand 13 6.00E-04

RNA-binding 24 9.80E-04

DNA replication 12 1.20E-03

Cell outer membrane 18 2.30E-03

Ion transport 21 3.20E-03

Bacterial flagellum biogenesis 7 3.60E-03

rRNA processing 10 4.50E-03

Methyltransferase 13 7.40E-03
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data after Legendre polynomial transformation. The opti-
mal partitioning results produce a set of gene curve profiles
that identify distinct types of gene expressions. Temporal
gene expression data can be viewed as functional data since
they are continuous and discretized samples of smooth ran-
dom gene expression trajectories according to time. Parti-
tioning differentiates cell-cycle regulated genes and other
non-cell-cycle regulated genes for yeast. Also partitioning
differentiates distinct cellular processes for E. coli.
The proposed method identified each partition for its

cellular process properties, which shows that trans-
formation via orthogonal polynomials could work for
self-consistent partitioning. Our contributions include
proposing principal points for microarray partitioning
and the idea of some functional coefficients as trans-
formation giving information about functional data.
The future development of our method considers other
transformations of functional data and functional time
dependency that expects improvements in partitioning
evaluation.
The yeast cell cycle data used is an early version of a

two channel microarray that was hybridized with cDNA
from two samples to be compared (e.g. normal versus
cancer cells). The E. coli dataset in this work is also gen-
erated using the custom made two channel microarray
technique with two different fluorescence dyes. However,
RNA-Seq uses a next-generation sequencing (NGS)
technique to measure the quantity of RNA in a sample
of interest. The expression intensity is quantified by
counting the number of reads mapped to each gene;
therefore, care should be taken as the changes of total
RNA amount between conditions possibly lead misrep-
resentation of the changes of individual transcript. In
conclusion our method can be applied if the RNA-Seq
data is appropriately processed. Further study is ex-
pected to utilize the proposed method in the analysis of
more complex model organisms such as rats.
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