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Current status and perspectives 
of genome editing technology for microalgae
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Abstract 

Genome editing techniques are critical for manipulating genes not only to investigate their functions in biology 
but also to improve traits for genetic engineering in biotechnology. Genome editing has been greatly facilitated by 
engineered nucleases, dubbed molecular scissors, including zinc‑finger nuclease (ZFN), TAL effector endonuclease 
(TALEN) and clustered regularly interspaced palindromic sequences (CRISPR)/Cas9. In particular, CRISPR/Cas9 has 
revolutionized genome editing fields with its simplicity, efficiency and accuracy compared to previous nucleases. 
CRISPR/Cas9‑induced genome editing is being used in numerous organisms including microalgae. Microalgae have 
been subjected to extensive genetic and biological engineering due to their great potential as sustainable biofuel 
and chemical feedstocks. However, progress in microalgal engineering is slow mainly due to a lack of a proper trans‑
formation toolbox, and the same problem also applies to genome editing techniques. Given these problems, there 
are a few reports on successful genome editing in microalgae. It is, thus, time to consider the problems and solutions 
of genome editing in microalgae as well as further applications of this exciting technology for other scientific and 
engineering purposes.
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Background
Targeted genome modifications are crucial for genetic 
analyses and genetic engineering in all aspects of biology 
and related biotechnological fields. Different from ran-
dom integration of cloned genes for overexpression, spe-
cific alterations of the eukaryotic genome have been great 
challenges for all biologists and biotechnologists. Gene 
targeting (GT) was initially developed in recombinogenic 
lower eukaryotes by introducing a homologous transgene 
into the cell, and by utilizing homologous recombination 
(HR), scientists were able to knockout or replace genes 
of interest [1]. GT has been successfully demonstrated 
in animals [2, 3] and plants [4]. However, GT in these 
higher organisms has been very difficult, in part, because 
they are not recombinogenic [5]. Newly developed 

techniques, including genome editing techniques, have 
bypassed this hurdle by engineered nucleases, dubbed 
“molecular scissors,” and the subsequent repair of DNA 
strand breaks results in mutations or replacements of the 
genes of interest [6].

Engineered nucleases include zinc-finger nucleases 
(ZFNs), transcription activator-like effector nucleases 
(TALENs), and clustered regularly interspaced palindro-
mic sequences (CRISPR)/CRISPR-associated protein 9 
(Cas9) [7]. These three, in particular CRISPR/Cas9, will 
be described for microalgal genome editing in this review 
even though there have been other nucleases includ-
ing meganucleases and group II intron-based targetrons 
adopted for genome editing in other organisms [8]. These 
sequence-specific nucleases have enabled researchers to 
cleave genomic DNA and to obtain mutations of a gene 
resulting from faulty repair of the cleaved DNA.

Microalgae have emerged as important platforms for 
the production of biofuels and other biomolecules, and 
genetic engineering of microalgae is, thus, one of the 
fastest growing biotechnology fields [9]. In addition to 
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overexpression of genes of interest, genome editing is 
essential for the suppression of genes interfering with the 
production of target molecules. However, progress in this 
field has been hampered by multiple layers of difficulties 
inherent to microalgae. This review will describe what 
has been achieved in microalgal genome editing and 
examine in detail the problems associated with micro-
algal genome editing and suggest possible solutions. 
Genome editing has many applications that have been 
shown in other organisms, and the possibility of these 
applications in microalgae will also be evaluated. Because 
the overexpression of genes shares the same techni-
cal problems, we will also include a brief description of 
microalgal transformation technology.

Introduction to genetic engineering
Genetic engineering, by definition, requires the delivery 
of genetic material to the genome resulting in genetic 
modifications. Since reports of successful transfection of 
animal cells with isolated viral DNAs in the early 1970s 
[10, 11], it took more than 10 years to achieve the trans-
formation of plants using Agrobacteria that are capable 
of transforming plants in nature [12]. As usual, transfor-
mation of the model microalga Chlamydomonas came 
much later in the late 1980s [13, 14]. The long delay in 
achieving microalgae transformation was not simply due 
to a smaller microalgal community but also to technical 
problems inherent to microalgae. The same delay was 
seen for genome editing techniques in microalgae. As 
pointed out lately, successful genome editing should be 
based on solid transformation techniques for an organ-
ism [15]. We, thus, summarize the historical perspectives 
of plant and microalgal transformation, which can pro-
vide clues to genome editing in microalgae.

Transformation of plants lagged behind animals prob-
ably due to the presence of the protective cell wall, and 
initial attempts of a workaround with protoplasts did not 
provide much success [16]. Instead, plant geneticists devel-
oped alternative techniques using the natural transforma-
tion machinery of Agrobacteria, which circumvented the 
removal of the cell wall [12]. In addition to Agrobacteria, 
particle bombardment also gained popularity, which can 
avoid the host range limitations of Agrobacteria [17]. Later 
on, the removal of the plant cell wall improved, and trans-
formation of protoplasts via polyethylene glycol (PEG) or 
electroporation was also established in plants [18, 19].

Transformation of the model microalga Chla-
mydomonas reinhardtii was achieved by the transfor-
mation techniques used for plants, which was done for 
nuclear [13, 14] and chloroplast genomes [20]. Later, trans-
formation by glass bead agitation was uniquely developed 
for C. reinhardtii, where protoplast cells were agitated vig-
orously with glass beads [21]. These pioneering works led 

to the development of the transformation toolbox in Chla-
mydomonas and other microalgae summarized in Table 1. 
In general, delivery of genetic material in microalgae is 
considered much less efficient compared to that of plants. 
On the other hand, once transformants are obtained, 
microalgae are mostly single cells and can be maintained 
somatically, not requiring the tedious (and recalcitrant in 
some species) regeneration steps in plants [15].

The development of the transformation toolbox in 
microalgae, excluding Chlamydomonas, presented 
another layer of difficulties mainly due to the paucity of 
selection markers that have been developed for plants 
and other microbes (Table  1). This is probably caused 
by their evolutionary divergence, where their cellular 
machineries have been differentiated so much that exist-
ing herbicides and antibiotics cannot be used for selec-
tion purposes. This is particularly true for the model 
“industrial microalgae” Nannochloropsis that are toler-
ant to most antibiotics and herbicides, which leaves only 
phleomycin and its derivative Zeocin for selection by the 
ble gene from Streptoalloteichus hindustanus (Shble) [22, 
23]. Exceptionally, N. oceanica CCMP1779 is sensitive 
to hygromycin that is selectable with aphVII [24]. How-
ever, green algae sharing lineages with plants offers more 
options of selection, including hygromycin and other 
herbicides and antibiotics, similar to that of plants [25].

Microalgal transformation still suffers from an 
extremely low transformation efficiency, even compared 
to plants, which calls for drastically improved transfor-
mation techniques. Lately, cell wall removal and PEG-
mediated protoplast transformation have been reported 
in Chlorella and Cyanidioschyzon [26–29]. PEG-medi-
ated protoplast transformation in plants achieves a 
higher transformation efficiency without the concerns 
of the host range of Agrobacteria or expensive equip-
ment [30]. Chlorella is gaining popularity in many global 
consortia of algal biofuel production, and it is, thus, 
interesting to see how this technique develops not only 
in Chlorella but also in other microalgae. Another tech-
nique that can be considered is bacterial conjugation for 
delivery of episomal vectors into microalgal cells, which 
is claimed to be more efficient than conventional trans-
formation techniques in diatoms [31]. Optimized tech-
niques of these might provide solutions for the current 
problems of delivery techniques in microalgae, which 
may be used for genome editing in microalgae.

Development of the transformation toolboxes also 
provided opportunities for reverse genetic techniques 
in microalgae, facilitated by the genomic sequencing 
of C. reinhardtii and other microalgae [24, 32]. These 
include RNA interference (RNAi) and artificial microR-
NAs (amiRNAs), based on the findings that microalgae 
are capable of RNA silencing by small interfering RNAs 
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Table 1 Development of the transformation toolbox in microalgae

Algal strain Delivery Marker Selection/stable integration/comments References

Chlamydomonas reinhardtii

 C. reinhardtii (arg7‑) Particle bombardment ARG7 Growth in arginine free medium/southern blot/correlation of 
the genetic and molecular maps of the ARG7 locus

[14]

 C. reinhardtii (nit1‑305) Particle bombardment NIT1 Growth in the presence of nitrate/southern blot/complemen‑
tation with NR deficient mutants

[153]

 C. reinhardtii
 Fud44 (OEE1‑)

Particle bombardment OEE1 Photoautotrophic growth/southern blot/complementation 
with OEE1‑deficient mutants

[154]

 A54‑e18 (ac17 nitl‑Δ1 sr1) and 
J9 (cw15 nit1‑305)

Glass beads agitation CRY1‑1 Resistance to emetine/heritable integration and southern 
blot/dominant selectable marker gene

[21]

 C. reinhardtii (nic7‑) Glass beads agitation nic‑7 Resistance to 3‑acetylpyridine/southern blot/dominant 
selectable marker gene

[155]

 C. reinhardtii
 363 (arg7‑8  cwd)

Glass beads agitation Sh ble Resistance to phleomycin/southern and western blots/first 
inheritable expression of a foreign gene in C. reinhardtii

[22]

 C. reinhardtii
 CC‑124

Particle bombardment aadA Resistance to spectinomycin/southern, northern and western 
blots/analyses of mRNA expression and stability of aadA

[156]

 C. reinhardtii
 302 (cw15 arg7‑8) and A 

(cw15 arg7)

Glass beads agitation aphVIII Resistance to paromomycin/southern, northern and western 
blots/expression of the aphVIII in C. reinhardtii in combi‑
nation with different promoters from rbcS2, hsp70A and 
chlamyopsin

[157]

 C. reinhardtii
 302 cw15 arg2 and CC‑124

Glass beads agitation aphVII Resistance to hygromycin B/RT‑PCR and southern blot/sec‑
ond heterologous marker

[158]

 C. reinhardtii
 CC‑125, CC‑425 and cwd‑ARG

Glass beads and elec‑
troporation

ALS Resistance to SMM/southern blot/strong promoter from 
RbcS2 for proper expression of ALS

[159]

Chlorella

 C. sorokiniana (NR‑UV9‑5) Particle bombardment NIT1 Growth in the presence of nitrate/southern blot and RNase 
protection assay/rescue of nitrate reductase deficient C. 
sorokiniana mutant

[40]

 C. vulgaris Electroporation hph Resistance to hygromycin B/southern blot/dominant selecta‑
ble marker gene

[160]

 C. vulgaris
 C‑27
 C. sorokiniana, ATCC‑22521

PEG‑mediated transfor‑
mation

Neor Resistance to G418 (geneticin)/unstable integration/produc‑
tion of human growth hormone

[27]

 C. ellipsoids KMCC C‑20 PEG‑mediated transfor‑
mation

Sh ble Resistance to phleomycin/southern and western blots/pro‑
duction of flounder growth hormone for feed

[29]

 C. vulgaris Electroporation CAT Resistance to chloramphenicol/PCR/heterologous promoter 
of NR from diatom

[161]

 C. zofingiensis ATCC 30412 Particle bombardment 
and electroporation

PDS‑L516F Resistance to norflurazon/PCR and southern blot/increased 
production of carotenoids

[162]

 C. ellipsoidea Electroporation Npt Resistance to G418/PCR, RT‑PCR and southern blot/heterolo‑
gous expression of GmDof4 from soybean for increased 
lipid

[163]

 C. vulgaris CBS 15‑2075 PEG‑mediated NptII Resistance to G418/southern blot/expression of EGFP [26]

Phaeodactylum tricornutum

 P. tricornutum
 Strain 646

Particle bombardment Sh ble Resistance to zeocin/southern, northern and western blots/
transformation toolbox for P. tricornutum

[164]

 P. tricornutum
 Strain 646

Particle bombardment NptII Resistance to neomycin/PCR and western blot/transforma‑
tion toolbox for P. tricornutum

[165]

 P. tricornutum
 CCMP632

Particle bombardment Sh ble Resistance to phleomycin/PCR, RT‑PCR, southern and western 
blots/RNA silencing by anti‑sense or inverted repeats

[166]

 P. tricornutum
 UTEX 646

Particle bombardment Sh ble Resistance to zeocin/none/increased DHA contents by heter‑
ologous Δ5‑elongase

[167]

Nannochloropsis

 N. oceanica W2J3B Electroporation Sh ble Resistance to zeocin/PCR/gene targeting of nitrate reductase 
and nitrite reductase genes

[116]

 N. oceanica
 CCMP1779

Electroporation aphVII Resistance to hygromycin B/southern blot/sequencing 
genomic DNA and functional annotation in N. oceanica

[24]
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(siRNA) and microRNAs (miRNAs) in C. reinhardtii 
and in other microalgae [24, 33–38]. In addition to the 
RNA-based knockdown techniques, gene targeting via 
HR was also introduced in Chlamydomonas and Chlo-
rella [39, 40]; however, these results were not reproduc-
ible probably due to the non-recombinogenic nature of 
microalgae. Similar difficulties were also observed in 
most of higher eukaryotes including animals and plants 
[2–4] because gene targeting was originally developed 
in recombinogenic yeasts [1]. Difficulties and/or ineffi-
ciencies of the above reverse genetic techniques called 
for a more efficient and precise modification of DNA, 
which led to genome editing, also known as genome 
engineering, using engineered nucleases. This review 
will further discuss genome editing, mainly focusing on 
microalgae, including difficulties and possible solutions.

Genome editing using engineered nucleases
Genome editing uses recombinant nucleases engineered 
to recognize and cleave specific sequences in the genome, 
resulting in double strand breaks (DSBs). DSBs are 

repaired mostly by a homology-independent and error-
prone DNA repair mechanism, called non-homologous 
end joining (NHEJ), resulting in mutations at the cleav-
age site [41–46]. Nucleases include ZFN, TALEN and 
CRISPR/Cas9 as summarized in Fig. 1a, and Table 2 lists 
representative cases of genome editing in plants and ani-
mals and all known cases of microalgal genome editing. 
Unfortunately, attempts of genome editing in microalgae 
have had limited success with only a handful of reports. 
Other endonucleases have been used for genome editing 
in other organisms, including meganucleases and group 
II intron-based targetrons as summarized in Fig.  1b [8, 
47, 48]. It would be interesting to find out how these 
nucleases work in microalgae.

ZFN and TALEN appeared as an alternative to gene tar-
geting via HR and have been used for targeted modifica-
tion of genomes [49–52]. They are fusion proteins of the 
restriction enzyme FokI [53] and their respective DNA 
binding proteins of zinc finger [54–58] and transcription 
activator-like effector (TALE) [59], summarized in Fig. 1a. 
The resulting DSBs induced by FokI are repaired mostly by 

Table 1 continued

Algal strain Delivery Marker Selection/stable integration/comments References

 N. gaditana CCMP526 Electroporation Sh ble Resistance to zeocin/PCR and southern blot/transformation 
toolbox for N. gaditana

[168]

 N. salina CCMP 1776 Particle bombardment Sh ble Resistance to zeocin/PCR and western blot/stable expression 
of foreign genes

[169]

 N. salina CCMP 1776 Particle bombardment Sh ble Resistance to zeocin/PCR, RT‑PCR, southern and western 
blots/overexpression of NsbHLH2 for increased lipid 
productivity

[23]

Dunaliella

 D. salina Electroporation CAT Resistance to chloramphenicol/PCR, RT‑PCR, southern, north‑
ern and western blots/stable expression of foreign genes

[170]

 D. salina Electroporation Sh ble Resistance to zeocin/PCR, RT‑PCR and southern blot/transfor‑
mation toolbox for D. salina

[171]

 D. viridis B14 (NIA1‑) Electroporation NIA1 Growth in the presence of nitrate salt/RT‑PCR and southern 
blot/complementation with NR deficient mutants

[172]

 D. salina Electroporation CAT Resistance to chloramphenicol/PCR and RT‑PCR/RNA silenc‑
ing by RNAi in D. salina

[173]

 D. salina 19/18 Particle bombardment CAT Resistance to chloramphenicol/PCR and southern blot/
increased total lipid content by 12% through endogenous 
expression of ME/AccD

[174]

Haematococcus pluvialis

 H. pluvialis
 NIES‑144

Particle bombardment PDS‑L504R Resistance to norflurazon/southern, northern and western 
blots/production of astaxanthin

[175]

 H. pluvialis
 SAG 19‑a

Agrobacterium‑mediated 
transformation

hph Resistance to hygromycin/PCR and southern blot/transforma‑
tion toolbox for H. pluvialis

[176]

 H. pluvialis
 SAG 34‑1a

Agrobacterium‑mediated 
transformation

hph Resistance to hygromycin/PCR and southern blot/overex‑
pression of bkt for increased carotenoids and astaxanthin 
production

[177]

aadA, aminoglycoside 3′-adenyltransferase; ALS, acetolactate synthase; aphVII, aminoglycoside phosphotransferase; aphVIII, aminoglycoside 3′-phosphotransferase; 
ARG7, argininosuccinate lyase; AccD, acetyl CoA carboxylase; bkt, beta carotene ketolase; CAT, chloramphenicol acetyltransferase; CRY1-1, ribosomal protein S14; 
DHA, docosahexaenoic acid; hph, hygromycin phosphotransferase; ME, malic enzyme;  Neor, neomycin phosphotransferase; nic-7, quinolinate synthetase; NIT1, NIA1, 
nitrate reductase; Npt, neomycin phosphotransferase; OEE1, oxygen-evolving enhancer protein1; PDS, phytoene desaturase; Sh ble, phleomycin binding protein; SMM, 
sulfometuron methyl
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the error-prone repair mechanism, NHEJ, in most eukar-
yotes, and mutations can be created at the cleavage sites 
in the form of small insertions or deletions (INDELs). A 
donor DNA can be included in the mutagenesis process 
and can be inserted at the DSB site via NHEJ or HR, which 
is called a knock-in [60]. A knock-in can be used for more 
efficient disruption of the target gene or stable expres-
sion of a gene at a specific location of the genome [45, 61], 
which will be discussed in more detail.

CRISPR/Cas9 has gained much attention not only 
from biologists who are actually working on it but also 
from the social media including the economic, legal, and 
industrial sectors [62], which is reflected by the heated 
legal battles for the patent of CRISPR/Cas9 [63, 64]. This 
unprecedented attention is mainly due to its excellent 
potential as the next generation genome editing tech-
nique. CRISPR/Cas9 is simple, accurate and efficient 
compared to other editing techniques [7, 61]. In addi-
tion, recombinant Cas9 protein can be assembled with 
single guide RNA (sgRNA) and delivered as ribonucleo-
proteins (Cas9 RNPs) into the cells [60, 65]. Delivery of 
Cas9 RNPs can minimize off-targeting and thus cytotox-
icity, and avoid the hassles of cloning markers and sgR-
NAs. More importantly, the Cas9 nuclease activity can be 
assessed prior to the lengthy transformation process [60, 
65, 66]. Cas9 RNPs, in contrast to vector-driven expres-
sion of Cas9 and sgRNAs, may also avoid conflicts from 
genetically modified organisms (GMOs) depending on 
the different legal systems [67–69]. Given the advantage 
of CRISPR/Cas9, this review will focus on it as the choice 
of genome editing techniques in microalgae. Lately many 
variations of different classes and types of CRISPR/
Cas9 have been reported [70], and thus, CRISPR will be 
reserved for the general term for all or any variations.

Biology and application of CRISPR
The CRISPR locus was first identified as short direct 
repeats interspaced with short sequences in E. coli [71] 
and later in other bacteria and even in mitochondria 
and giant viruses, as summarized in Fig.  2a [72, 73]. 
The CRISPR systems are adaptive immune systems that 
provide sequence-specific protection against invading 
viruses or conjugative plasmids [70, 74–76]. It should 

be noted that there is another type of immunity in bac-
teria called restriction–modification systems [75, 77], for 
which the restriction enzymes revolutionized molecular 
biology resulting in the Nobel Prize in 1978. CRISPR is 
also revolutionizing all aspects of biology and biotech-
nology and may be nominated for a Noble Prize [78].

The CRISPR immunity is divided into three stages 
(Fig. 2b): spacer acquisition (or adaptation), CRISPR RNA 
(crRNA) biogenesis, and interference stages. During the 
spacer acquisition stage, a target DNA sequence, known 
as a protospacer, is excised and inserted at the 5′ end of 
the CRISPR array producing a new spacer. The subse-
quent crRNA biogenesis includes transcription and pro-
cessing of the CRISPR array into mature crRNAs. At the 
final interference stage, crRNAs guide the effector com-
plex to the target site and cleave the DNA producing DSBs 
in the re-invading viruses. There are excellent reviews on 
the biology of CRISPR [70, 74, 76]. This review will focus 
on the effectors including endonucleases because these 
nucleases are used for genome editing [79].

The CRISPR systems can be classified into two classes 
and six types, summarized in Fig.  2a. Class 1 CRISPR 
systems contain effectors composed of multi-subunit 
proteins, while those of class 2 contain a single effec-
tor with multi-domain such as Cas9 or Cpf1. Class 1 
is divided into types I, III and IV, and class 2 includes 
types II, V and VI, for which the types were numbered 
based on their order of discovery [74, 80]. The CRISPR 
systems are very diverse, and Fig. 2 depicts only a rep-
resentative composition of genes at the CRISPR loci. 
It is estimated that CRISPR is present in about 50% of 
bacteria and ~ 90% of archaea [80]. For the purpose of 
technological applications, class 2 effector nucleases 
are mainly used due to their convenience in cloning 
and delivery into host cells. Class 2 nucleases are also 
diverse in their structural and functional aspects, and 
this diversity heralds a new age of genome editing that 
can be customized for individual research projects [74].

Use of CRISPR for genome editing
Since the initial finding of the mysterious repeats of the 
CRISPR array in E. coli in 1987 and in many other bac-
teria in 2000 [71, 72, 81], CRISPR/Cas9 has been shown 

(See figure on previous page.) 
Fig. 1 Summary of genome editing techniques using engineered nucleases. The first two nucleases are made by a fusion of a zinc‑finger protein 
and TALE to the restriction enzyme FokI, producing ZFN and TALEN, respectively (a). In contrast, Cas9 contains nuclease domains for the cleavage of 
DNA and RNA binding domains for the guide RNAs, which offer simplicity and better accuracy compared to the predecessors. All three nucle‑
ases produce DSBs, and INDELs can be produced via error‑prone DNA repair NHEJ. When donor DNAs (red) are provided, knock‑in events can be 
produced via either NHEJ or HDR. Other types of nucleases were summarized (b), including meganucleases and targetrons. Timeline of the major 
nucleases and their use in genome editing were summarized in c. Their first reports are shown in shades, and those of microalgal genome editing 
are shown in solid boxes
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Table 2 Genome editing in microalgae and other organisms

Organism Delivery/nuclease Gene/marker Comments References

Animals

 CHO‑S cells (11619‑012) Lipofectamine 2000 transfection
ZFN

DHFR Identification of biallelic knockouts after a 
single transient ZFN treatment

[57]

 SKOV3 cells
 ATCC

FuGENE HD transfection reagent
TALEN

EGFP and DsRed Development of TALENs in mammalian cells [59]

 Mouse cells
 NIH3T3

Microinjection or Lipofectamine 
2000

CRISPR/Cas9

EGFP and ApoE Improvement of bi‑allelic modification by 
dual sgRNAs

[178]

 Human cell lines
 MCF‑7, NSCLC and A549

Lipofectamine 2000 transfection
CRISPR/Cas9

Mitochondrial GTPase 
Mitofusin‑2/GFP

Identification of role MFN2 in human cells [179]

 H9 human ES cells and other 
cell lines

Electroporation
CRISPR/Cas9

CCR5 gene Genome editing Cas9 RNPs [65]

 Mouse zygotes Electroporation
CRISPR/Cas9

Tyrosinase gene Genome editing Cas9 RNPs [180]

 Zebrafish (Danio rerio) strain 
AB

Microinjection into embryos
CRISPR/Cas9

akt2 gene Functional role of akt2 gene in zebrafish [181]

Plants

 Nicotiana tabacum (tobacco) Protoplast transformation
TALEN

ALS gene/YFP gene Successful targeted gene replacement with 
TALENs

[51]

 Arabidopsis thaliana Agrobacterium‑mediated trans‑
formation

CRISPR/Cas9

ADH1, TT4, RTEL1 
gene/bar gene

Genome editing using CRISPR/Cas9‑based 
nucleases and nickases

[101]

 Arabidopsis thaliana Agrobacterium‑mediated trans‑
formation

CRISPR/Cas9

GFP gene Stable inheritance of Cas9/sgRNA‑generated 
mutant genes in T2 and T3 progeny

[182]

 Camelina sativa Agrobacterium‑mediated trans‑
formation

CRISPR/Cas9

FAD2 gene Induced mutations caused change in fatty 
acid composition

[183]

 Maize Hi‑line Particle bombardment
CRISPR/Cas9

LIG, ALS2, MS26 and 
MS45/MOPAT‑DSREB

Genome editing Cas9 RNPs [184]

 Wheat embryos Particle bombardment
CRISPR/Cas9

TaGW2 gene Genome editing Cas9 RNPs [185]

Cyanobacteria

 Synechococcus elongatus
 UTEX 2973

Conjugation
CRISPR/Cas9

nblA Genome editing using CRISPR/Cas9‑based 
nucleases

[186]

 Synechococcus elongatus
 PCC 7942

Conjugation
CRISPR/Cas9

glgc/GmR gene Increase of succinate
Production

[187]

Synechococcus UTEX 2973 Conjugation
CRISPR/Cpf1

psbA1, nblA Genome editing using CRISPR/Cpf1‑based 
nucleases

[188]

 Synechocystis 6803
 Anabaena 7120

Conjugation
CRISPR/Cpf1

nblA
nifH

Genome editing using CRISPR/Cpf1‑based 
nucleases

[188]

Microalgae

 C. strain CC‑4350 Glass beads
ZFN

COP3 gene/aphVIII 
gene

Targeted gene knockout induced by ZFN [58]

 P. tricornutum CCMP2561 Bombardment
TALEN

UGPase/NAT gene Increase in triacylglycerol accumulation [91]

 C. reinhardtii CC503 Electroporation
CRISPR/Cas9

FKB12 gene First application of CRISPR/Cas9 in micro‑
algae

[111]

 P. tricornutum CCMP2561 Bombardment
CRISPR/Cas9

CpSRP54 gene/Shble First application of CRISPR/Cas9 in diatoms [189]

 C. reinhardtii
 CC‑124

Electroporation
CRISPR/Cas9

MAA7, CpSRP43 and 
ChlM

Targeted gene knockout and knock‑in via 
NHEJ in Chlamydomonas

[60]

 C. reinhardtii
 CC‑4349

Electroporation
CRISPR/Cas9

ZEP and CpFTSY Production of two‑gene knockout mutant [112]

 C. reinhardtii
 CC‑400

Glass beads
CRISPR/dCas9

PEPC1 and RFP CRISPRi in Chlamydomonas [104]
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to target DNA specifically in vitro resulting in DSBs [82, 
83]. This led to the first reports of genome editing in 
eukaryotic cells in 2013 [84, 85], and then, an explosive 
number of reports followed [79] (Table 2).

The advantages of the CRISPR system for genome 
editing reside in the effector nucleases, for which the 
nucleases do not require the tedious and labor-intensive 
cloning of DNA binding domains for targeting speci-
ficity. In contrast to the predecessor nucleases ZFN 
and TALEN, the DNA specificity of CRISPR nucleases 
is provided by a guide RNA composed of crRNA and 
trans-activating crRNA (tracrRNA), which were further 
simplified by the sgRNA [7]. This simple design and prep-
aration of CRISPR enables multiplexed mutagenesis by 
simply adding up sgRNAs [86, 87]. In addition, CRISPR 
nucleases appear to be more efficient and more precise 
compared to predecessors [88].

Another advantage of CRISPR is the diverse nucleases 
which can be customized for individual needs. Cas9 from 
Streptococcus pyogenes (SpCas9) was initially used for 
CRISPR-mediated genome editing in animal cells [82, 
83]. Lately, nucleases including CRISPR from Prevotella 
and Francisella 1 (Cpf1) and CRISPR from Campylobac-
ter jejuni (CjCas9) have been introduced for genome edit-
ing with improved efficiency and specificity [41, 89, 90]. 
New class 2 CRISPR systems are being reported, and the 
number is increasing [74], and different types of nucle-
ases will offer customization of the editing technique for 
individual research projects.

Best of all, CRISPR appears to be most efficient in 
microalgal genome editing based on the number of 
papers reported so far, even though it debuted last in 
the genome editing field (Table  2). ZFN and TALEN 
have been used for mutagenesis of Chlamydomonas and 
a diatom, respectively [58, 91], and to the best of our 
knowledge, there have not been any follow-up reports. 
Fortunately, CRISPR is gaining a strong foothold in 
microalgal genome editing, which may provide the 

possibility of practical and efficient genome editing in 
microalgae.

However, CRISPR technology still has some limita-
tions, which requires improvements for proper use 
in genome editing. CRISPR-induced mutations occur 
randomly depending on the repair of DSBs mostly via 
NHEJ [92, 93]. Currently precision genome engineer-
ing is emerging for better management of mutagenesis, 
including gene replacement, multiple cleavage and base 
correction [46], some of which will be further described 
in “Applications of the CRISPR system” section. Off-tar-
geting can still be an issue for medical and agricultural 
purposes, even though CRISPR is considered as the most 
accurate genome editing technique [94]. Fortunately, 
CRISPR offers a variety of nucleases with improved ver-
satility and/or fidelity, which can also provide optional 
PAM sequences [41, 89, 90, 95]. These improvements will 
benefit both biology and biotechnology fields, particu-
larly for microalgal community.

Technical aspects of CRISPR‑mediated genome editing
A key to successful genome editing is efficient deliv-
ery of genetic materials, and it has been the main bot-
tleneck in transformation of microalgae. In general, the 
cell wall is considered as the most significant barrier for 
the introduction of macromolecules into plant cells [16]. 
To avoid this problem, the cell wall is removed, and the 
resulting protoplasts are subjected to PEG-mediated 
transfection, which appears to be very effective without 
the need for expensive supplies and equipment [18, 30, 
96]. With the proper removal of the cell wall, this tech-
nique can result in a transfection efficiency of up to 70% 
in cassava mesophyll protoplasts [97], which may offer 
an opportunity to improve microalgal transformation. 
In fact, as summarized in Table 1, there have been a few 
reports on PEG-mediated transformation of microalgae 
including Chlorella [26, 27, 29] and Cyanidioschyzon 
[28]. These attempts did not result in a greatly improved 

Table 2 continued

Organism Delivery/nuclease Gene/marker Comments References

 N. oceanica IMET1 Electroporation
CRISPR/Cas9

Nitrate reductase 
gene/HygR

Targeted gene knockout in Nannochloropsis [113]

 N. gaditana CCMP1894 Electroporation
Cas9 Editor line

ZnCys TF
BSD

Knockout and attenuation of ZnCys in Nan-
nochloropsis

[114]

ADH1, alcohol dehydrogenase 1; akt2, AKT serine/threonine-protein kinases 2; ALS, acetolactate synthase; aphVIII, aminoglycoside 3′-phosphotransferase; ApoE, 
apolipoprotein E; bar, herbicide bialaphos; BSD, blasticidin S deaminase; CCR5, C–C motif chemokine receptor 5; ChlM, Mg-protoporphyrin IX S-adenosyl methionine 
O-methyl transferase; COP3, light-gated proton channel rhodopsin; CpFTSY, signal recognition particle receptor protein, chloroplast; CpSRP43, chloroplast signal 
recognition particle 43; CpSRP54, chloroplast signal recognition particle 54; DHFR, dihydrofolate reductase; DsRed, red fluorescent protein; EGFP, green fluorescent 
protein; FAD2, fatty acid desaturase 2; FKB12, peptidyl-prolyl cis–trans isomerase; glgc, glucose-1-phosphate adenylyl transferase;  GmR, gentamycin-resistance gene; 
HygR, hygromycin resistance; LIG, liguleless1; MAA7, beta subunit of tryptophan synthase; MFN2, mitochondrial GTPase mitofusin-2; MS26 and MS45, male fertility 
genes; NAT, N-acetyl transferase; nblA, phycobilisome degradation protein; nifH, nitrogenase reductase; PEPC, phosphoenolpyruvate carboxylase; PsbA1, D1 protein of 
photosystem II; RFP, red fluorescent protein; RTEL1, regulator of telomere length 1; TaGW2, gene related to grain development; TT4, transparent testa 4; UGPase, UDP-
glucose pyrophosphorylase; YFP, yellow fluorescent protein; ZEP, zeaxanthin epoxidase
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transformation efficiency; however, this technique can 
be improved by complete and/or efficient removal of 
the cell wall, which may also improve genome editing in 
microalgae.

Next, successful genome editing in microalgae can 
be achieved by proper use of the CRISPR nucleases, 
particularly with the class 2, which are single peptides 
containing all the functional domains necessary for 

Fig. 2 Different subtypes of the CRISPR systems (a) and their biological mechanisms of immunity against invading viruses (b). Genes involved in 
interference are shown in the red boxes and those involved in crRNA biogenesis and adaption in the yellow boxes and green boxes, respectively, 
mainly based on [74, 80]. The signature gene of each types is indicated by blue letters, and the complex of multiple effector proteins is indicated by 
gray boxes. Dispensable genes are indicated by dashed lines. LS, large subunit; SS, small subunit
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sequence-specific DNA cleavage [74]. The founding 
member of such nucleases is SpCas9, and its homologs 
have been identified in many bacterial strains, and they 
use two RNA molecules (crRNA and tracrRNA) or 
one sgRNA for binding to the protospacer, the target 
sequence on DNA. SpCas9 has the protospacer adjacent 
motif (PAM) as an additional sequence specificity that 
provides security minimizing off-target effects. PAM 
for SpCas9 is mainly NGG but sometimes NAG and is 
located directly 3′ to the protospacer [7, 79].

Cas9 homologs are equipped with two endonuclease 
domains producing DSBs, namely the RuvC and HNH 
domains. These domains are modular enabling individual 
engineering for different purposes. RuvC was originally 
identified as part of the RuvABC operon (for “resist-
ance to UV light”) and is the endonuclease involved in 
the resolution of the Holliday junction during UV repair 
[98]. The HNH domain (named for the histidine, aspara-
gine and histidine residues critical for the nuclease activ-
ity) is found in many endonucleases including restriction 
enzymes and meganucleases [99]. Both RuvC and HNH 
domains are required for producing DSBs. However, 
their catalytic sites can be modified to produce a nick-
ase by making an individual mutation of either D10A or 
H840A, respectively [79, 100]. Such Cas9 nickases are 
not efficient for inducing mutations but can be used for 
enhanced knock-in of expression cassettes via HR [101]. 
In addition, both catalytic sites can be mutated to pro-
duce the dead Cas9 (dCas9), and this can be used for 
variants of CRISPR/Cas9 techniques including CRISPR 
interference (CRISPRi), where dCas9 is used as a 
sequence-specific DNA binding protein leading to inter-
ference of transcription of the target gene [102–104].

The CRISPR system also offers different types of nucle-
ases, such as Cpf1 and C2c1, which is considered the 
biggest advantage compared to other genome editing 
techniques [74]. Cpf1 was initially identified as a type V 
CRISPR effector from Prevotella and Francisella, which 
shows endonucleolytic activities different from Cas9. 
The differences include a T-rich PAM site and stag-
gered cleavage of DNA located 3′ to PAM [95]. Cpf1 
from Acidaminococcus sp. (AsCpf1) and Lachnospiraceae 
bacterium (LbCpf1) have been used for genome edit-
ing in animals and plants [66, 89, 95]. These Cpf1s do 
not require tracrRNA, which offers simpler preparation 
of the guide RNA. In addition, it appears to be more 
efficient and accurate than Cas9 [66, 89] and thus has 
emerged as the next generation nuclease for genome edit-
ing. Additional type V nucleases, but less studied, include 
C2c1 and C2c3. These type V effectors are further classi-
fied as subtype V-B and V-C, while Cpf1 belongs to the 
V-A subtype [74]. These subtypes are characterized by 

different domain structures, which can be used for cus-
tomized genome editing purposes.

Interestingly, there is another type of CRISPR sys-
tem containing endonucleases that cleave RNA targets 
instead of DNA. These belong to the type VI, and the 
sequence-specific RNases include C2c2 and many oth-
ers [74, 105]. The type VI CRISPR system is reminiscent 
of the eukaryotic RNA silencing mechanism involving 
the RNA-induced silencing complex (RISC), in which 
Argonaute (AGO) and Dicer carry out guide RNA (i.e., 
siRNA)-based sequence-specific identification and cleav-
age of the target RNA, respectively [106–108]. However, 
C2c2 carries both functions [109] revealing another bac-
terial ingenuity of simplicity, in contrast to the bulky, 
complex and elaborate eukaryotic counterparts. RNAi 
in eukaryotic systems is not very reliable in the suppres-
sion of gene expression particularly in microalgae [110], 
and the type VI CRISPR systems may provide a better 
alternative.

Different from any gnome editing techniques, the 
CRISPR system enables the delivery of preassembled 
Cas9 or Cpf1 RNP with the cognate guide RNAs in vitro 
[65, 89]. Compared to vector-driven expression of the 
nucleases and guide RNAs, the RNP system is simple 
and convenient without the need for the laborious and 
time-consuming cloning process and thus obtains results 
faster. There are other benefits of the RNP approach 
including the pre-test of the nuclease activity in  vitro. 
There was a correlation between in  vitro and in  vivo 
activities of SpCas9 in Chlamydomonas for different tar-
get sites in the same gene [60]. In addition, RNP delivery 
can minimize off-target effects and possible toxicity from 
the continuous expression of a nuclease [60, 65, 111]. It 
does not introduce any artificial DNA including markers 
and heterologous genes and may avoid GMO conflicts 
[67]. Best of all, it has been successful in the recalcitrant 
model algae Chlamydomonas [60, 112]. This may provide 
interesting opportunities to deal with the difficulties in 
microalgal genome editing.

Considering the difficulties in delivering genetic mate-
rials into microalgal cells, microalgal genome editing is 
gaining momentum with the CRISPR/Cas9 systems sum-
marized in Table 2. In case of vector-based Cas9 expres-
sion in microalgae, codon usage can be optimized for 
better expression of Cas9 in microalgae [60, 111–114]. 
This achievement is in part due to the efficiency and sim-
plicity of the CRISPR systems [60, 112]. Another reason 
can be due to the fact that many microalgae are haploids, 
enabling the selection of knocked-out clones without 
the need to make homozygotes. Green algae, including 
chlorophytes and charophytes, are considered to have a 
haplontic life cycle in which their genomes are haploids 
during vegetative growth [115], and this may be true in 
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other microalgae including Nannochloropsis [116] and 
Guillardia [117]. On the other hand, haploids do not 
allow the knockout of essential genes, which should be 
considered before making a gene list for potential knock-
outs. In this case, one can consider the CRISPR knock-
down approaches such as CRISPRi and attenuation of 
gene expression by targeting UTRs that will be described 
in more detail [118, 119].

Applications of the CRISPR system
The simplicity of the CRISPR systems has led to a sudden 
increase in variant technologies, which was difficult with 
previous techniques of genome editing or any reverse 
genetic techniques. First, the Cas9 nuclease can be eas-
ily manipulated to create nickases or dCas9, and these 
variants can be used for additional genome manipulation 
including knock-in and CRISPRi [7, 60, 102]. Second, 
multiple sites can be targeted simultaneously by simply 
adding guide RNAs, for which two sites can be targeted 
to obtain a chromosomal deletion, inversion or transloca-
tion [7]. The numbers can be increased to target multiple 
genes at the same time [86] or even to create a barcoded 
CRISPR mutant library [87]. It should also be noted that 
anti-CRISPRs have been identified in bacteriophages as 
an arms race against their hosts [120, 121], which pro-
vides an interesting possibility that they can be used in 
genome editing, such as a conditional knockout. There is 
a long list of applications for the CRISPR systems [119, 
122, 123], and some of these that are relevant or applica-
ble to microalgae will be described in this review.

dCas9 for CRISPRi and manipulation of gene expression
Cas9 contains well defined endonuclease domains that 
can be modified to create a nickase or even dCas9, and 
these mutants can also be used for new exciting tech-
niques. In particular, dCas9 can bind to the target site 
without cleaving DNA, and this can interfere with cel-
lular processes including transcription. This CRISPRi 
technique has been shown in bacteria and even in Chla-
mydomonas [102, 104, 119, 124]. In bacteria, dCas9 inter-
feres with the expression of target gene(s) by providing 
steric hindrance to RNA polymerase or transcription fac-
tors, depending on the location of target sites [102, 124]. 
In Chlamydomonas, CRISPRi is shown to knockdown the 
expression of phosphoenolpyruvate carboxylase (PEPC) 
[104], albeit less effective possibly due to the difference 
between prokaryotic and eukaryotic transcription mech-
anisms, where eukaryotic transcription is more tolerant 
to DNA binding proteins including chromatin.

dCas9 can also be repurposed for other functions by 
fusion of domains involved in transcriptional activation 
(CRISPRa), repression (CRISPRi), and epigenetic regula-
tion (Fig. 3). It should be noted that CRISPRi is used for 

simple interference without any fused proteins [102, 124] 
and for active interruption with repressor domains [119], 
which may be resolved in the future. For CRISPRa, the 
multiple repeats of the herpes simplex VP16 activation 
domain (VP64) and the nuclear factor-κB transactivating 
subunit activation domain (p65AD) have commonly been 
used as activator domains in eukaryote systems [125–
127]. These subunits are fused to the N or C terminus of 
dCas9 as a single or multiple units. After it is shown that 
having more activators improve the activation efficiency, 
several units including different activator domains can be 
added. For example, the ‘SunTag’ array consists of 10 cop-
ies of a small peptide epitope each linked with VP64 and 
sfGFP by scFV [128]. As another example, the synergistic 
tripartite activation method (VPR) uses a tandem fusion 
of three transcription activators, VP64, p65 and Rta 
[129]. The synergistic activation mediator (SAM) is fused 
to VP64, and two MS2 RNA aptamers added to the tetra-
loop and second stem-loop of the sgRNA recruit p65Ad 
and heat shock factor1 (HSF1) through MCP [130, 131].

Repressors that have been used in CRISPRi include 
MAX-interacting protein 1 (MXI1) from yeast, Krüppel-
associated box (KRAB) domain of Kox1, the CS domain 
of HP1α, the WPRW domain of Hes1, or four concate-
nated mSin3 domains (SID4X) which are fused either to 
the amino or carboxyl terminus [125, 132, 133]. However, 
it appears that this field has some room for improve-
ments. Epigenetic regulation is critical for proper expres-
sion of genes, which can be achieved by histone and 
DNA modifications. The Lys-specific histone demethyl-
ase 1 (LSD1) fusion protein, the catalytic core of histone 
acetyltransferase (p300), or DNMT3A, a DNA methyl-
transferase, has been tested with dCas9 [134–136]. These 
can be used as epigenome editing tools to reveal inter-
actions between the epigenome and regulatory elements 
and their epigenetic mechanism of gene expression [137, 
138] not only in higher eukaryotes but also in microalgae.

Knock‑ins with CRISPR
CRISPR can also be used for a knock-in and replace-
ment of a gene(s), if given a donor DNA(s) (Fig. 1). Dur-
ing the repair process of DNA breaks caused by CRISPR 
nucleases, the donor DNA can be integrated at the cleav-
age site via HDR or NHEJ. The donor DNA without any 
inserted expression cassette can also be used for replace-
ment of a gene via HDR [7, 139]. Given the homologous 
sequences flanking the transgene, single-stranded donor 
DNAs can be integrated at the cleavage site of nucleases 
including TALEN [140, 141]. Alternatively, Cas9 nick-
ase (D10A) can also enhance knock-in or gene replace-
ment in plants [101]. Interestingly, a knock-in can also 
occur through NHEJ (Fig.  1a), where no homologous 
sequences are present in the transgene. NHEJ-mediated 
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knock-in events have been reported in zebrafish and 
Chlamydomonas [60, 142].

Knock-in events can be used in targeted integration of 
transgenes at certain locations on the genome. Random 
integration of transgenes suffers from position effects and 
transgene silencing [143, 144]. Such detrimental effects 
are also known in microalgae including Chlamydomonas 
[33, 34, 145–147] and can influence the stable expression 
of transgenes. These problems can be solved in part by 
integrating transgenes at transcriptionally favorable loca-
tions on the genome. Actually, such “safe-harboring” has 
been shown; the knock-in of transgenes at transcription-
ally active sites, e.g., near the rDNA cluster, increases the 
expression of transgenes [46, 148, 149]. Currently, func-
tional genomic data including RNA-Seq and epigenom-
ics mapping of histone modifications can offer candidates 
of transcriptionally active locations. These locations 
can be targeted for the integration of expression cas-
settes. In microalgae, fortunately, cloning of the flanking 
homologous sequences may be not necessary because the 
knock-in via NHEJ can occur in Chlamydomonas and 
Nannochloropsis [60, 114].

Perspectives of genome editing in microalgae
Microalgae and CRISPR are relatively new additions to 
biotechnology fields, which are expected to contribute to 
biomaterial production and genome editing techniques, 

respectively. Combination of the two quintessential com-
ponents is potentially the key to solve the environmen-
tal problems associated with usage of fossil fuels. Such 
example has been reported recently, where CRISPR-
induced knockout or attenuation of a regulatory gene 
can increase lipid accumulation in industrial microalgae 
Nannochloropsis [114].

Different from previous editing techniques, CRISPR 
allows systemic, albeit labor-intensive, screening of 
knockout mutations due to its simplicity and convenience 
[113, 114]. This is reflected by the number of reports, 
in which ZFN and TALEN-induced mutagenesis for 
only one for each techniques since 2013 [58, 91]. How-
ever, successful genome editing with CRISPR alone has 
been documented three times in 2016 as summarized in 
Table 2. This success heralds new and improved genome 
editing field in microalgae, which attracts great interests 
of academic and industrial biology and biotechnology.

Even though microalgae are difficult in genetic manip-
ulation, their biological characteristics offer advantages. 
They are single cells, and mostly contain haploid genomes 
for their vegetative cells [115–117, 150]. This leads to 
convenient knockout without the necessity of regen-
eration, which is considered a main bottleneck in plants 
[15]. In addition, being haploid, microalgae do not have 
to go through another generation for homozygotes. On 
the other hand, complete knockout of an essential gene is 

Fig. 3 Application of the CRISPR system for manipulation of gene expression using dCas9. Different functional domains of transcriptional regulators 
can be fused to dCas9, which result in activation or repression of the target genes
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not possible, in which attenuation should be considered. 
For example, attenuation can be achieved by targeting 
outside of coding sequence such as untranslated regions 
or by CRISPRi [114, 119].

Problems and possible solutions with CRISPR application 
in microalgae
Microalgae are still difficult to manipulate genes pos-
sibly due to their multitude of problems. Firstly, it is 
hard to deliver genetic materials into the cells, probably 
because they have unique cell wall and surface structures 
that reflect their complex taxonomic lineages [151]. This 
diversity hinders development of standardized protocols 
for transformation. To avoid such problems, one can 
remove the cell wall and employ protoplast transforma-
tion, which has been demonstrated for a few microalgae 
including Chlorella as summarized in Table  1 [26, 27, 
29]. Protoplasts are in general easier to transform, which 
may improve efficiencies of not only transformation but 
also genome editing. Secondly, microalgae may have very 
efficient silencing systems against introduced genetic 
materials including DNA and RNA at the transcriptional 
and post-transcriptional levels. Such silencing systems 
have been reported for the model algal Chlamydomonas 
[33, 145], and are expected to exist in other microalgae 
[34]. Temporary knockdown of one of the silencing com-
ponents may improve transformation efficiency [34]. 
Permanent mutations of silencing components are not 
recommended, because they are also involved in genome 
stability [145].

Cas9 RNP appears to be more efficient than vector-
driven Cas9 in Chlamydomonas [60, 111, 112], and is 
advantageous if heterogeneous genetic material should 
not be introduced, particularly in areas where GMOs are 
prohibited. However, high quality non-toxic recombinant 
Cas9 protein is not easy to prepare or is expensive to pur-
chase from a company. However, for research purposes, 
a stable line of Cas9 or equivalent nucleases can be con-
structed for efficient gene editing. For example, the Cas9 
Editor line has been successfully employed to produce 18 
mutations in Nannochloropsis [114].

Precision genome editing technologies require precise 
mutagenesis without producing off-targeting events, 
which has not been well established in microalgae. Such 
precision is crucial for certain applications of CRISPR 
particularly for gene therapy in human, and is well estab-
lished in animals and plants [152]. Fidelity of genome 
editing can be improved by Cas9 RNP in animal cells 
[65, 66], and Shin et al. reported no off-targeting events 
in Chlamydomonas using Cas9 RNP [60]. Other than the 
latter, off-targeting has not been examined in microalgae, 
where such efforts should improve safety and consistency 
of genome editing in microalgae.

Conclusions
Genome editing is essential for obtaining mutations of 
target genes enabled by recombinant nucleases with 
sequence specificity. The latest nucleases found in the 
CRISPR systems are far better than the predecessors in 
terms of their simplicity, accuracy and efficiency. This 
improved CRISPR technology can be used in the cor-
rection of mutations, replacement of genes, and tar-
geted integration of overexpression cassettes. It can also 
be used for many other purposes including attenuation 
of gene expression, removal of transgenic markers, etc., 
and the list is getting longer. The microalgal community 
is catching up with this new and exciting technology but 
is lagging behind the main stream technical develop-
ments in animals and plants. We need to first solve the 
fundamental problems in microalgae, which is the inef-
ficient delivery of genetic materials into the cell. Given 
such a tremendous barrier, many more papers have been 
reported with CRISPR compared to the previous tech-
niques, which may herald a new age of genome editing in 
microalgae.
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