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Pan-cancer analysis of somatic 
mutations and transcriptomes 
reveals common functional gene 
clusters shared by multiple cancer 
types
Hyeongmin Kim & Yong-Min Kim

To discover functional gene clusters across cancers, we performed a systematic pan-cancer analysis of 
33 cancer types. We identified genes that were associated with somatic mutations and were the cores 
of a co-expression network. We found that multiple cancer types have relatively exclusive hub genes 
individually; however, the hub genes cooperate with each other based on their functional relationship. 
When we built a protein-protein interaction network of hub genes and found nine functional gene 
clusters across cancer types, the gene clusters divided not only the region of the network map, but also 
the function of the network by their distinct roles related to the development and progression of cancer. 
This functional relationship between the clusters and cancers was underpinned by the high expression 
of module genes and enrichment of programmed cell death, and known candidate cancer genes. In 
addition to protein-coding hub genes, non-coding hub genes had a possible relationship with cancer. 
Overall, our approach of investigating cancer genes enabled finding pan-cancer hub genes and common 
functional gene clusters shared by multiple cancer types based on the expression status of the primary 
tumour and the functional relationship of genes in the biological network.

The Cancer Genome Atlas (TCGA, https://cancergenome.nih.gov/), which contains genome maps from more 
than 30 cancer types, has revealed thousands to hundreds of thousands of somatic mutations. Through decades 
of cancer research, we now know that cancer genes contain “driver” mutations that have causal roles in the devel-
opment of cancer, and accumulated “passenger” mutations that are from cell differentiation and proliferation1. 
Driver mutations modify protein-coding sequences of genes and provide a selective growth advantage. Small 
differences in the rates of cell division and cell death that result from each driver mutation contribute to an 
enormous amount of cancer cells over years2. Thus, cells that have driver mutations tend to accumulate more 
mutations and proliferate uncontrollably. Passenger mutations that were not thought to be active contributors 
to cancer are now considered “dark matter” together with mutations in non-coding sequences3. These mutations 
consistently affect exonic motifs by altering the mRNA splicing pattern4, and changing the coding regions in DNA 
and RNA, which can affect gene regulation3.

To determine the effect of genomic variants on transcriptomic changes, integrated analysis using multi-omics 
data, including somatic mutations and transcriptomes, has been performed with liver and breast cancers5,6. The 
data showed cancer cells were transcriptionally more active than normal cells. In addition, many genomic variants 
of cancers show stable high expression that triggers transcriptional alterations such as over- or under-expression 
of genes and splicing aberrations. Other studies that integrated somatic mutation and transcriptome data were 
performed in breast cancer7,8. One report identified a potential driver gene mutation that was predictive of patient 
survival, and the other report used the data to stratify patients into groups with different clinical outcomes. In all 
studies referenced above, transcriptome data were used based on their important biological aspect, rather than 
as ancillary data.
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Currently, the use of multi-omics data is not limited to a single type of cancer; rather, comprehensive analysis 
of multiple cancer types is becoming the new paradigm to understand cancer9–11. Hoadley et al. integrated six dif-
ferent omics datasets (mRNA-Seq, miRNA-Seq, reverse-phase protein arrays, structural copy number alterations, 
DNA methylation, and somatic mutations) from 12 cancer types, and found 11 subtypes based on expression 
profile that were informative and extended beyond tissue-of-origin cancer types in the classification10. Similarly, 
Liu et al. integrated three datasets (copy number alterations, somatic mutations, and DNA hyper-methylations) 
from 12 cancer types11; the authors found nine subgroups and reported cross-cancer similarities. Akbani et al. 
showed that the functional proteome gave independent knowledge of cancer that was not captured by genomic 
and transcriptomic data9. In these reports, different properties of omics data enabled complementary detection of 
different pathways and features across cancers.

Recently, pan-cancer transcriptome analyses that were based on differentially expressed genes (DEGs) 
between tumour and normal expression have been reported12,13. Cao et al. investigated co-expression networks 
using Pearson correlation of DEGs in 16 cancer types and showed that merged pan-cancer gene networks had 
pan-cancer subnetwork signatures of prognostic potential12. Cabanski et al. found differentially expressed long 
non-coding RNAs (lncRNAs) across eight solid tumour types, referred as onco-lncRNAs, which might have 
oncogenic and tumour suppressor roles13.

Thus, these successful pan-cancer studies have led to a broader understanding the nature of cancer. In this 
study, as part of these efforts, we aimed to identify functional gene clusters across cancer types. Using publicly 
available cancer data from the TCGA database that included somatic mutations and transcriptomes, we investi-
gated the properties of somatic mutation-associated hub genes in the weighted gene co-expression networks of 
33 TCGA cancer types. We focused on the expression status of primary tumours and functional relationships 
between hub genes in the biological network. Here, we report integrated hub gene sets from multiple cancer 
types, and nine common functional gene clusters shared by multiple cancer types. The clusters were functionally 
related to development and progression of cancer, and had high gene expression and enrichment of programmed 
cell death (PCD) genes and known cancer genes. Non-coding genes of the integrated hub gene set also showed a 
functional relationship with cancer.

Results
Research process. We used somatic mutations from 10,425 cases and expression quantification data 
from 9,831 cases (Supplementary Tables S2 and S3, respectively), which encompassed 33 types of cancer 
(Supplementary Table S1). Following selection of the primary tumour and filtering based on TCGA annotations, 
weighted gene co-expression analysis (WGCNA14) for gene expression data was performed, and WGCNA mod-
ules and module hub genes were identified. Then, we selected genes at the intersection between module hub genes 
and somatic mutation-associated genes for each TCGA dataset for additional analysis. We integrated selected 
genes from each TCGA dataset into the pan-cancer-wide selected genes (PSGs) group. PSGs were categorised 
according to protein-coding status. For protein-coding PSGs (pcPSGs), a single-depth network of protein-pro-
tein interaction (PPI) was generated and subnetworks were discovered using the method developed by Bader15. 
Subsequently, we summarised the gene clusters of subnetworks and non-coding PSGs (ncPSGs) using gene ontol-
ogy (GO) terms or Kyoto Encyclopaedia of Genes and Genomes (KEGG)16 pathway terms. To understand the 
characteristics of the gene clusters in subnetworks, we performed additional investigations of the expression 
patterns of genes and level of cluster occupation of the TCGA dataset, and enrichment analyses for known cancer 
genes and PCD genes. A schematic diagram of the research process is shown in Fig. 1.

For somatic mutations and expression, only data from the primary tumour type were used and filtered based 
on annotations. After weighted gene co-expression analyses were conducted, genes at the intersection of somatic 
mutations-associated genes and module hub genes were collected as selected genes for each TCGA dataset. Then, 
we integrated selected genes from each TCGA dataset into the pan-cancer-wide selected genes (PSGs) group. For 
protein-coding PSGs (pcPSGs), a single-depth network of protein-protein interaction (PPI) was generated and 
subnetworks were discovered. The subnetwork genes and non-coding genes were summarised using gene ontol-
ogy (GO) terms or KEGG pathway terms. To investigate the characteristics of gene clusters of subnetworks, we 
investigated the expression pattern of genes and level of cluster occupation of the TCGA dataset, and conducted 
enrichment analyses for known cancer genes and programmed cell death (PCD) genes.

Somatic mutation filtering and gene expression data. For somatic mutation data, from 0.4% 
(TCGA-PAAD) to 84.3% (TCGA-SKCM) of variants were filtered out (Supplementary Table S4). The num-
ber of variants per aliquot ranged from 7.4 (TCGA-PCPG) to 979.9 (TCGA-UCEC), and the number of 
variant-associated genes ranged from 780 (TCGA-UVM) to 26,042 (TCGA-UCEC) (Supplementary Table S5). 
The number of pan-cancer-wide genes with variants was 27,041. Normalised frequencies of somatic mutation 
calls from genes are shown in a heatmap (Supplementary Fig. S1). Except for TCGA-LUAD and -LUSC, we could 
not identify clustering of datasets of the same tissue based on mutation frequencies of genes. Furthermore, we 
did not observe a distinct cluster of genes that were dominant across all cancer types with the high number of 
variants. Only one gene, TTN was mutated in all 33 TCGA datasets, which had the highest average number of 
somatic mutations (0.56 mutations per aliquot). Including TTN, there were nine genes which had more than 
one mutation for every ten aliquots: MUC16, LRP1B, CSMD3, RYR2, SYNE1, FAT4, USH2A, and PCLO genes 
(Supplementary Data S1). When we took into account of exon length of genes, immunoglobulin genes and mito-
chondrially encoded genes such as IGHV2-70, IGHD2-15, IGHD3-3, IGLC2, MT-CYB, IGHV1-69-2, IGHG2, 
and MT-CO3 were potentially having higher mutation burden in a pan-cancer context (Supplementary Data S1).

For quantification of gene expression data, up to 125 (TCGA-OV) cases were filtered out (Supplementary 
Table S6).
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Weighted gene co-expression network analysis. Before we conducted WGCNA for normalised 
expression values, we examined the data for excessive missing values and excluded outlying samples for each 
TCGA dataset (Supplementary Fig. S2). Then, we chose suitable parameters for calculation of connection strength 
that were required to generate the weighted network for WGCNA (Supplementary Fig. S3 and Supplementary 
Table S7). As a result, we identified an average of 122 WGCNA modules (from 37 of TCGA-CHOL to 243 of 
TCGA-LIHC); 81% of genes (from 49.8 of TCGA-BLCA to 97.7 of TCGA-UVM) were covered by the modules 
(Supplementary Fig. S4, Supplementary Data S2, and Supplementary Table S8). With the intention of assigning a 
similar number of genes to each dataset, we used an average of 2,852 genes (from 885 of TCGA-THCA to 4,938 
of TCGA-DLBC) as module hub genes.

Pan-cancer-wide selected genes (PSGs). To identify genes that had somatic mutations in cancer and 
that were highly connected with other genes in the co-expression network, we selected genes at the intersection 
between genes associated with somatic mutations and genes that were module hubs. An average of 218 genes 
(from 19 of TCGA-PCPG to 536 of TCGA-UCEC) was selected (Supplementary Table S9). After integration, the 
number of PSGs was 4,546. When we observed genes that overlapped between TCGA datasets, 67.4% of PSGs 
(3,064 PSGs) belonged to only a single TCGA dataset (Supplementary Fig. S5). Regarding the frequencies of 

Figure 1. Schematic diagram of the research process.
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somatic mutations in PSGs, we did not identify dominant genes across all types of cancer, and did not find dis-
tinctive clusters of TCGA datasets (Fig. 2).

Heatmap of normalised values of somatic mutation calls of PSGs. TCGA datasets are shown on the x-axis and 
genes are on the y-axis. A dendrogram at the top of the heatmap show clustering of the datasets. A dendrogram 
on the right of the heatmap show clustering of the genes.

Among 4,546 PSGs, 3,299 genes were protein-coding genes and 1,247 genes were non-coding genes 
(Supplementary Fig. S6). Except for TCGA-CHOL, all other TCGA datasets had more pcPSGs than ncPSGs.

Protein-Protein Interaction (PPI) network of protein-coding PSGs (pcPSGs). Of 3,299 pcPSGs, 
1,740 genes had PPI information in the STRING V10 database17, and another 5,072 genes had a PPI with pcPSGs 
(Supplementary Data S3). In this study, we referred to these genes as ‘representors’ and ‘interactors’, respectively. 
The single-depth PPI network of pcPSGs had 6,812 nodes and 84,128 edges (Fig. 3). All except for 230 genes 
connected into a large single network consisting of 6,582 genes. The nodes of the network followed a power-law 
distribution; several genes with a high degree of interaction (Supplementary Fig. S7 and Supplementary Data S3) 
were noted. They were 207 olfactory receptor genes, ADCY8, EP300, GNG2, KNG1, and RP11-294C11.1 genes. In 
the network, we did not find notable spatial patterns of PSGs in specific TCGA datasets. PSGs in TCGA datasets 
were randomly distributed in the PPI network, and PSGs in different TCGA datasets were located closely to each 
other.

PSGs that have PPI information (representors) are coloured differently according to the TCGA dataset to 
which they belong. The colour indicator for the TCGA datasets is located to the top right corner. PSGs that belong 
to more than one TCGA dataset are presented like pie charts. The genes that interact with PSGs (interactors) are 
presented as grey colour. The node size and name reflect the number of connections. Except for genes of the two 
groups on the bottom right, all are connected to a large single network.

Gene Ontology (GO) term enrichment analysis of subnetwork genes. To deliver functional anno-
tation of the network, we found nine clusters of genes and created subnetworks based on inter-connection of 
nodes (Fig. 4a, Supplementary Fig. S8, and Supplementary Table S10). The clusters partitioned the regions of the 
network map properly. We used an additional program option for large subnetworks, and we obtained relatively 
large subnetworks compared to many small subnetworks. However, use of the option allowed detection of loosely 
interacting modules in the network; the clusters’ shared genes were not mutually exclusive (Supplementary 
Fig. S9). The number of genes shared by clusters 2, 6, 7, and 8 was high.

To summarise the functions of clusters, GO term enrichment analysis was performed for each subnetwork. 
Among 2,217 subnetwork genes, 2,209 were identified in DAVID Bioinformatics Resources 6.818 (Supplementary 

Figure 2. Number of variants of pan-cancer-wide selected genes (PSGs) per aliquot.
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Table S10). Then, we summarised the enriched biological GO terms as a tree map (Fig. 4b and Supplementary 
Fig. S10). For genes of cluster 1, GO terms related to ‘G-protein-coupled receptor signalling pathway’ and ‘sensory 
perception of smell’ were enriched. In cluster 2, genes of many signal transduction pathways including ‘cell surface 
receptor signalling pathway’ and ‘intracellular signal transduction’, and genes of ‘regulation of cell proliferation’, 
‘regulation of apoptotic process’, and ‘inflammatory response’ were enriched. Cluster 3 had enriched GO terms: 
‘O-glycan processing’ and ‘carbohydrate metabolic process’. Cluster 4 had enriched GO terms: ‘glutathione (GSH) 
derivative biosynthesis’, ‘xenobiotic metabolism’, and ‘drug metabolism’. In cluster 5, ‘muscle filament sliding’, 
‘extracellular matrix organisation’, and ‘movement of cell or subcellular component’ were enriched. In cluster 6, 
GO terms related to signal transduction, immune response, and metabolism of GSH and steroids were enriched. 
In cluster 7, GO terms related to angiogenesis (‘vascular endothelial growth factor receptor signalling pathway’, 
‘extracellular matrix organisation’, and’platelet activation’) and cell proliferation were enriched. In cluster 8, GO 
terms related to regulation of transcription (‘positive regulation of gene expression’ and ‘transcription from RNA 
polymerase II promoter’), cell growth (‘epidermal growth factor receptor signalling pathway’ and ‘regulation of 
cell cycle’), and apoptosis (‘positive regulation of apoptotic process’ and ‘regulation of cell proliferation’) were 
enriched. In cluster 9, GO terms of transport (‘ER to Golgi vesicle-mediated transport’) and cell movement (‘actin 
filament capping’ and ‘cellular response to glucagon stimulus’) were enriched.

Characteristics of subnetworks. To identify the characteristics of subnetworks, we performed several 
analyses. First, we investigated the expression pattern of subnetwork genes (Fig. 5). Expression of genes that 
belonged to subnetworks was higher than genes not involved in subnetworks. Except for cluster 1, genes in clus-
ters had higher expression levels than genes that were not in clusters, and interactors had higher expression than 
representors.

Ten panels are shown to present gene expression patterns. The large panel on the left includes genes in all clus-
ters. Nine small panels on the right show genes in a specific cluster. The name of the cluster is on top of each panel. 
The representors, interactors, and other genes are presented as red, green, and blue, respectively. The panel shows 
the density and cumulative fraction of genes (y-axis) against log values of average FPKM (“fragments per kilobase 
of exon per million fragments”; a unit of expression quantification) in the TCGA dataset (x-axis). The expression 
values of the genes in the left panel were also used in the nine panels on the right.

Second, we investigated the level of cluster occupation of TCGA datasets in subnetworks (Fig. 6 and 
Supplementary Fig. S11). We did not identify a dominant cancer type that occupied a cluster exclusively (Fig. 6a 
and Fig. 6b). The highest occupation ratio was 0.3 of TCGA-STAD in cluster 5. In clusters 3, 4, and 9, there were 
only 16, 19, and 17 cancer types, respectively. This finding indicated that these clusters had a relatively low level 

Figure 3. Single-depth protein-protein interaction (PPI) network of protein-coding pan-cancer-wide selected 
genes (pcPSGs).
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of cluster sharing. However, there were 30, 30, 29, and 32 cancer types in clusters 2, 6, 7, and 8, respectively. In 
addition, the range of fluctuation in occupation ratios was narrow in clusters 2, 6, 7, and 8 (Fig. 6c and d). This 
result indicated that these clusters had a relatively high level of cluster sharing.

Figure 4. Gene clustering of single-depth PPI network of pcPSGs and gene ontology (GO) term summarisation 
of gene clusters. (a) Gene clusters of nine subnetworks are shown in different colours. The colour indicator is 
located in the top right corner. The genes that are not in subnetworks are grey colour. (b) GO term summary of 
gene clusters of subnetworks are presented as a tree map. The name of the subnetwork is on top of the tree map, 
and the relative size of blocks shows the significance of enrichment of the GO term. Similar GO terms were 
combined and grouped into a large block of the same colour. The term of most uniqueness in the large block is 
shown on the white box and located at the centre of the block.
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Figure 5. Expression patterns of subnetwork genes.

Figure 6. Level of cluster occupation of TCGA datasets in subnetworks and distribution of cluster occupation 
ratios. (a) Occupation ratio of TCGA dataset is shown for each cluster. The length of bar indicates occupation 
ratio of the dataset that takes the number of shared genes into account. (b) For all occupation ratio of (a), the 
ratio against their rank is shown. (c) A stair-step plot shows the occupation ratio against the rank for each 
cluster. (d) The smoothing plot using loess regression of (c). The indicator of colours for clusters is on the 
bottom right corner.
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When we generated a heatmap of cluster-cancer type relationships based on the number of PSGs in clusters, 
we identified discordance between clustering of cancer types and clustering based on primary site of cancer 
(Supplementary Fig. S12). The heatmap did not reflect tissue-of-origin-based classification when we stratified 
cancer types according to the number of PSGs of TCGA datasets in clusters. Clusters 2, 6, 7, and 8, which had a 
relatively high level of cluster sharing, showed a moderate correlation in hierarchical clustering.

Third, enrichment analysis for PCD genes was performed. We collected three types of PCD: apoptosis (type 1 
PCD), autophagy (type 2 PCD), and programmed necrosis (type 3 PCD) (Supplementary Data S4). Then, enrich-
ment of PCD genes in subnetworks, the whole network, and PSGs (Table 1) was investigated. PCD genes were 
significantly enriched in PSGs compared to genes that were not in PSGs, and were enriched in the PPI network of 
PSGs compared to genes were not in the network. Within the network, PCD genes were enriched in subnetworks. 
In subnetworks, PCD genes existed in all clusters except for clusters 1 and 4. Clusters 6, 7, 8, and 9 had enrichment 
of PCD genes compared to the other clusters and the other genes of the network. The genes of type 1 and 2 PCD 
were enriched in clusters 6, 7, and 8.

Fourth, we performed enrichment analysis for known and candidate cancer genes. Both known and candidate 
cancer genes were significantly enriched in PSGs, the PPI network, and clusters (Table 2). Clusters 6, 7, and 8 had 
enrichment of both known and candidate cancer genes compared to the other clusters and other genes of the net-
work. Cancer-related genes existed in all clusters. Subsequently, we conducted additional enrichment analysis to 
evaluate PPI network membership and PSGs membership (Supplementary Table S11). Cancer-related genes were 
enriched in PSGs of the network compared to PSGs that were not in the network. For genes that were not PSGs, 
the interactors in the network had enrichment of cancer-related genes. For genes of the PPI network, candidate 
cancer genes were enriched in the representors, and known cancer genes were enriched in the interactors.

Summarisation of non-coding PSGs (ncPSGs). We categorised ncPSGs into four categories and 19 
subcategories according to annotations in Ensembl (Supplementary Table S12). Pseudogenes composed 77.2% of 
ncPSGs, and two categories of short non-coding RNA and lncRNA occupied 16.1% and 6.5% of ncPSGs, respec-
tively (Supplementary Figure S13). For each cancer type, occupation of gene type categories was investigated 
(Supplementary Figure S14). Overall, pseudogenes were a major component. Short non-coding RNA had high 
levels of cluster occupation in TCGA-LUAD, LUSC, HNSC, BLCA, and UCEC.

To summarise the function of ncPSGs, we performed KEGG pathway enrichment analysis. Among nsPSGs, 
245 genes were identified in DAVID Bioinformatics Resources 6.8, and the KEGG pathway term ‘MicroRNAs 
in cancer’ was significantly enriched for 17 genes (Bonferroni adjusted p-value of 2.28∙10−21) (Supplementary 
Table S13). For lncRNAs of ncPSGs, functions were investigated using LncRNA Ontology19. Among 81 long 
ncPSGs, 59 genes (72.8%) were identified in LncRNA Ontology. GO terms related to RNA processing, transport 
system, signal transduction, and cell growth and death were enriched (Supplementary Figure S15). These findings 
indicated that ncPSGs also had a possible relationship with cancer.

Discussion
To investigate the properties of somatic mutation-associated hub genes in the weighted gene co-expression net-
works of multiple cancer types, we used publicly available somatic variant calls and gene expression quantification 
values from the TCGA database. This approach ensured reproducibility of the study and reliability of data that 
were curated manually and extensively over the years by experts.

No. of 
genes

No. of PCD 
genes

No. of type 1 
PCD genes

No. of type 2 
PCD genes

No. of type 3 
PCD genes

Cluster 1 342 0 0 0 0

Cluster 2 536 13 5 7 6

Cluster 3 69 1 0 0 1

Cluster 4 158 0 0 0 0

Cluster 5 151 6 6*** 0 1

Cluster 6 521 28**,*** 19**,*** 16**,*** 8

Cluster 7 399 29**,*** 18**,*** 18**,*** 6

Cluster 8 857 49**,*** 36**,*** 28**,*** 10

Cluster 9 38 4**,*** 1 3**,*** 0

Clusters 2,219 79* 50* 38* 21

Not in clusters 4,597 124 64 43 37

Network 6,816 203* 114* 81* 58*

Not in network 50,472 113 28 50 41

Pan-cancer-wide selected genes 4,546 43* 19* 15 20*

Non-pan-cancer-wide selected genes 52,742 273 123 116 79

Table 1. The number of programmed cell death (PCD) genes and enrichment analysis. *PCD genes were 
enriched in genes in clusters, networks, and PSGs compared to other genes not in clusters, networks, or PSGs. 
**PCD genes were enriched compared to other genes in clusters. ***PCD genes were enriched compared to 
other genes in networks.
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After applying filtering criteria, 84.3% of variants in the TCGA-SKCM dataset were filtered out (Supplementary 
Table S4). This might come from the characteristics of SKCM tumours in that primary skin cutaneous melanoma 
tumours are difficult to pinpoint and distinguish from melanocytic nevi20,21. Mutation frequencies varied across 
cancer types (Supplementary Table S5). The frequencies of variants were high in TCGA-UCEC, SKCM, COAD, 
LUAD, and LUSC, which were 979.9, 493.4, 327.1, 292.1, and 289.9, respectively. The variation in mutation fre-
quency can be explained by cancer type. In melanoma and lung cancers, exposure to environmental mutagens 
is known as a major cause of increased mutations22. In uterine and colorectal cancers, DNA mismatch repair 
(MMR) and DNA replication are coupled together, the inactivation of MMR and the inactivation of the proof-
reading domain of DNA polymerase epsilon (PolE) results in high mutation frequencies23.

In identifying somatic mutation-associated genes, we used all types of mutations including synonymous muta-
tions because “passenger” mutations can be contributors to cancer3,4,24. However, accumulated non-contributing 
mutations and non-contributing genes were identified. Therefore, by including genes at the intersection between 
genes associated with somatic mutations and WGCNA module hub genes, we intended to avoid considerable 
number of false hub genes that had only somatic mutations or importance in only WGCNA.

Using mutation frequencies of PSGs and the number of PSGs from clusters, we investigated TCGA datasets 
that could be stratified according to those data (Fig. 2 and Supplementary Fig. S12). However, we did not identify 
distinguishable clusters of datasets based on the number of variants, and we only identified clustering of datasets 
when we investigated the number of PSGs in clusters, which were similarly sorted in order of total number of 
PSGs in datasets. Unlike a network-based stratification (NBS) method25, high dimensional data of individual 
samples were lost in our procedures, which did not reflect tissue-of-origin-based classification and were not suit-
able to classify cancer types. Aspects of mutation frequencies of PSGs and the number of PSGs of clusters showed 
little commonality among datasets.

When we observed genes that overlapped between TCGA datasets, 67.4% of PSGs belonged to only a single 
TCGA dataset (Supplementary Fig. S5). For PSGs that belonged to most datasets, only two genes were found in 
11 datasets. This finding indicated that PSGs were not common core genes shared by all cancer types, and each 
cancer type had relatively exclusive PSGs. In the PPI network of pcPSGs, we did not identify specific TCGA 
datasets that dominantly occupied clusters of specific sections in the network, and PSGs of different cancer types 
were mixed-up and closely located in the network (Fig. 3). This pattern also was observed in the subnetworks 
(Supplementary Fig. S8). This finding indicated that PSGs of different cancer types were functionally related to 
each other. Taken together, the data suggest that multiple cancer types have relatively exclusive hub genes indi-
vidually; however, the hub genes tended to cooperate with each other based on their functional relationships. We 
noted that, however, this didn’t mean actual PPIs in individual clinical cases, which needed to be validated by 
further experimental studies.

In summarising PPI networks of pcPSGs, we found nine gene clusters and created subnetworks based on 
inter-connectedness of genes (Fig. 4a). Partitioning of the network map by gene clusters of subnetworks showed 
appropriate division of the regional distribution of network genes. In addition, functional annotations acquired 
from GO term enrichment analysis of subnetwork genes appropriately divided and explained the function of net-
work genes (Fig. 4b and Supplementary Fig. S10). In detail, cluster 1 mainly consisted of olfactory receptors (ORs) 
that are members of G protein-coupled receptors and known to function in the sensory perception of smell. 
ORs were previously reported as implausible and false-positive genes in cancer because they had low expression 
and were late in replication timing26. Our result also showed relatively low expression of ORs. However, a recent 
review that summarised the effect of ectopic expression of ORs showed abundant evidence that expression of ORs 

No. of 
genes

No. of known 
cancer genes

No. of candidate 
cancer genes

Cluster 1 342 0 30

Cluster 2 536 21 40

Cluster 3 69 1 5

Cluster 4 158 2 6

Cluster 5 151 7 16

Cluster 6 521 41** 59**

Cluster 7 399 33** 47**

Cluster 8 857 89** 92**

Cluster 9 38 1 6

Clusters 2,219 131* 194*

Not in clusters 4,597 201 296

Network 6,816 332* 490*

Not in network 50,472 176 544

Pan-cancer-wide selected genes 4,546 67* 278*

Not in pan-cancer-wide selected genes 52,742 441 756

Table 2. The number of known and candidate cancer genes and enrichment analysis. *Known and candidate 
cancer genes were enriched in clusters, networks, and PSGs compared to other genes. **Known and candidate 
cancer genes were enriched in these clusters compared to other clusters and other genes in networks.
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was up-regulated in multiple cancer types27. In prostate cancer, upregulation of ORs induced a chronic inflamma-
tory response, promoted tumour growth, and correlated with cancer progression.

Clusters 2, 6, 7, and 8 were closely located in the network map, and the number of shared genes was high 
(Supplementary Fig. S9). These findings indicated that these clusters were functionally more interrelated. 
Cluster 8 might have roles in transcriptional regulation of cancer, tumour growth, and altered PCDs. Cluster 7 
might contribute to tumour-associated angiogenesis. Clusters 2 and 6 might reflect dysregulated signalling and 
unregulated inflammation in cancer28,29. When the delicate mechanisms of signalling networks are distorted, 
they accelerate cancer progression via changes in the tumour microenvironment, angiogenesis, and inflamma-
tion28. Inflammation is the first defence mechanism of innate immunity. However, unregulated chronic inflam-
mation induces malignant transformation of cells and upregulation of cytokines that contribute to tumour 
growth. Cytokines are secreted from tumour-associated macrophages, tumour-infiltrating lymphocytes, and 
cancer-associated fibroblasts29. Because cytokines have multiple roles in many kinds of cell activity, unregulated 
inflammation is associated with generation of reactive oxygen species (ROS), reactive nitrogen species, tumour 
growth, angiogenesis, and epithelial mesenchymal transition that promote invasiveness and metastasis29.

Genes in cluster 3 were involved in glycosylation processes such as sialylation, fucosylation, O-glycan pro-
cessing, keratan sulphate biosynthesis, and ganglioside biosynthesis. Glycosylation is the enzymatic process that 
attaches saccharides to proteins, lipids, or other saccharides via glycosidic linkages30. These saccharides are called 
glycans, and a molecule to which one or more glycan units are covalently linked to a non-carbohydrate entity 
is called a glycoconjugate31. There are three major classes of glycoconjugates: glycoproteins, proteoglycans, and 
glycosphingolipids. The glycoproteins carry covalently attached glycans via nitrogen or oxygen linkages, which 
are known as N-glycans and O-glycans, respectively30. Proteoglycans have one or more glycosaminoglycans, 
such as keratan sulphate. Glycosphingolipids consist of a glycan attached to the lipid ceramide; when it contains 
sialic acid, it is called a ganglioside. Gangliosides are associated with receptor tyrosine kinases such as epidermal 
growth factor and insulin receptors31. Glycoconjugates are present on the cell surface and mediate cell adhesion 
and motility, as well as intracellular signalling. Tumour cells show aberrant expression of various glycans due to 
a wide range of glycosylation alterations that regulate the development and progression of cancer via cell interac-
tions, extracellular communication, and immune reactions30.

Cluster 4 genes were enriched for GSH derivative biosynthesis, xenobiotic metabolism, and drug metabo-
lism. GSH plays a major role in intracellular redox homeostasis, and participates in many metabolic processes32. 
Because GSH has an antioxidant effect on cells, decreased or depleted GSH increases cytotoxicity via oxidative 
stress, which is implicated in the progression of cancer33. On the other hand, malignant tumours have higher GSH 
levels compared to normal tissues, which is associated with multidrug and radiation resistance34. Increased GSH 
contributes to drug resistance by interacting with drugs/ROS, damage protection of proteins/DNA, or affecting 
the DNA repair process32,35. In the tree map block of “GSH derivative biosynthesis”, there were enriched GO 
terms related to acyl-chain remodelling and phospholipids. The phospholipid class and acyl-chain homeostasis 
are crucial for normal membrane function36. Cluster 4 genes might contribute to survival of cancer cells in the 
tumour microenvironment.

Clusters 5 and 9 were neighbours in the PPI network of pcPSGs. Genes expressed in muscle cells and associ-
ated with membrane transport were enriched in clusters 5 and 9, respectively, and both showed similar enriched 
GO terms related to actin filaments. This finding indicated that genes in these clusters contribute to intracellular 
transport systems in cancer cells and cancer cell migration. The actin cytoskeleton regulates cell polarity, adhe-
sion, and migration37. With actin filaments, the non-muscle myosin motors function in endocytic, exocytic, and 
recycling pathways38. These are tightly organised; disruption of myosin and the actin cytoskeleton may interfere 
with normally well-regulated pathways. For example, disruption of myosin activity results in aberrant receptor 
internalisation and recycling, which can alter growth factor receptor signaling38. Similarly, distortion of myosin, 
the actin cytoskeleton, and other molecular activities results in tumour cell migration and invasion38,39.

In summary, the gene clusters of subnetworks showed the spatial organisation of the PPI network map of 
pcPSGs, but also divided and explained the function of the network via their distinct roles related to development 
and progression of cancer.

Genes that belonged to subnetworks were more highly expressed than other genes (Fig. 5). Shilien et al. pre-
viously showed that cancer cells were more transcriptionally active than normal cells by using a fraction of tran-
scripts derived from cancer cells and fractions of cancer cells6. The subnetwork genes might contribute to the 
transcriptionally active state of cancer cells. Zhang et al. showed a positive correlation between the importance of 
a gene and its expression level40. In that study, the word “important” was defined as a sequence’s relevance to the 
fitness of the organism bearing the sequence, and protein importance was measured as protein dispensability41. 
This finding indicated that high expression of subnetwork genes reflected their biological benefits to cancer cells 
in the tumour microenvironment.

Investigation of the cluster occupation ratio of TCGA datasets showed that clusters 2, 6, 7, and 8 were involved 
in most of cancer types, and showed a narrower range of fluctuation in cluster occupation ratio (Fig. 6). This 
finding indicated that these clusters had a relatively high level of cluster sharing, which was more essential to most 
cancer types. This result was underpinned by the enrichment analyses for PCD, known, and candidate cancer 
genes (Tables 1 and 2). The enrichment analyses showed that all PCD, known, and candidate cancer genes were 
enriched in clusters 6, 7, and 8. Many types of PCD in cancer are well known as key players in ultimate decisions 
of cancer cell fate42. The PCD is involved in cancer initiation and progression. Enrichment of known and candi-
date cancer genes means that cancer driver genes are more likely to exist in those clusters.

The enrichment analyses also showed that PCD, known, and candidate cancer genes were enriched in PSGs 
and the PPI networks of pcPSGs. This result supports the close relationship between pcPSGs and cancer. Besides 
pcPSGs, we found evidence that ncPSGs were also related to cancer. We identified the significantly enriched 
KEGG pathway term “MicroRNAs in cancer”, which included 17 ncPSGs (Supplementary Table S13). In the 
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summary of lncRNAs of PSGs, there were GO terms that were possibly related to cancer such as “DNA damage 
response, signal transduction by p53 class mediator”, “multicellular organismal growth”, “cell cycle”, “cell death”, 
and “cell division” (Supplementary Fig. S15). Among ncPSGs, pseudogenes accounted for 77.2% (Supplementary 
Fig. S13). Pseudogenes were once thought to be ‘junk’ DNA; however, it is now known that they affect many 
physiological and pathological processes at the DNA, RNA, and/or protein levels, especially in cancer43,44. 
Pseudogenic DNAs can interact with gene loci based on their sequence homology, which result in alteration 
of target sequences and/or transcriptional efficiency. Pseudogenic RNAs such as antisense RNAs, endogenous 
small-interference RNAs, competing endogenous RNAs, and chimeric RNAs, can act as post-transcriptional reg-
ulators. Although most pseudogenes have lost their ability to encode proteins, a few pseudogenes have retained 
or regained protein-coding ability43. Pseudogenic proteins can act as fully functional proteins in the wrong place 
and time, as antigens recognised by the immune system, and as partially functional proteins that interact with 
parental proteins, which affect the functions of their parental counterparts. Recently, classification of the major 
histological subtypes of endometrial cancer was reported using pseudogene expression45.

Our experimental design had a limitation in that it did not stratify genes and cancer types like the NBS 
method; however, our different approach to investigating cancer genes enabled us to identify pan-cancer hub 
genes and pan-cancer functional gene clusters based on the expression status of the primary tumour itself and 
gene-to-gene relationships in the biological network. Our findings also had high relevance to understanding gene 
expression profiles and biological pathways that are in common among diverse types of cancer.

Materials and Methods
TCGA data (somatic mutation, gene expression quantification, and metadata). The Cancer 
Genome Atlas (TCGA) data used in this study were from the Genomic Data Commons (GDC) (https://gdc-por-
tal.nci.nih.gov/) Data Release 4.0. The reference gene annotations of the GDC were from GENECODE46 Release 
22 (GRCh38.p2). This was an evidence-based annotation of the human genome GRCh38, which was based on 
the data of Ensembl47 release 79. We used publicly available data on 33 types of cancer (Supplementary Table S1) 
for analyses.

For somatic mutation data, we used somatic variant calls in mutation annotation format (MAF), which were 
MuSE48 variant aggregation and masking data. There was one file for each dataset, and 33 files with 10,425 cases 
were downloaded (Supplementary Table S2).

For gene expression quantification data, we used pre-calculated gene expression values in fragments per 
kilobase of exon per million fragments (FPKM). For this study, we selected TCGA datasets for primary cancers 
such as ‘Primary Blood Derived Cancer - Peripheral Blood’, ‘Primary Tumour’, and ‘Additional - New Primary’. 
There were 9,922 files with 9,831 cases downloaded (Supplementary Table S3).

We used two types of metadata, which were biospecimen and annotation data. The biospecimen data was used 
for ID mapping of hierarchical biospecimen elements (dataset-patient (or case) -sample-portion-analyte-aliquot), 
and the annotation data was used for filtering somatic mutation and gene expression quantification data. There 
were 11,353 files of biospecimen data, and 33 annotation tables of 1,013 items with annotations (one file for each 
dataset) for somatic mutation data and one annotation table of 1,952 items with annotations for gene expression 
quantification data.

Data analysis. A schematic diagram of the research process is shown in Fig. 1.

Filtering of somatic mutation data. For somatic mutation data, we applied three types of filtering crite-
ria, which were based on sample type, TCGA annotations, and read depth. First, we selected aliquots of primary 
cancers such as ‘Primary Blood Derived Cancer - Peripheral Blood’, ‘Primary Tumour’, and ‘Additional - New 
Primary’. Second, we excluded results of aliquots that had annotations except those with an arbitrary filtered-in 
category such as ‘Acceptable treatment for TCGA tumour’, ‘Alternate sample pipeline’, ‘Item in special subset’, and 
‘Item is noncanonical’. Filtered out categories included critical flaws such as ‘Item may not meet study protocol’, 
‘Barcode incorrect’, ‘BCR notification’, ‘Prior malignancy’, and so on. Third, we removed MuSE somatic mutation 
calls with t_depth (read-depth in the tumour) < 14 or n_depth (read-depth in the normal) < 8 from MAF files 
according to previous research26. Then, we selected genes at the intersection between GRCh38 Ensembl releases 
79 and 86 to exclude misannotated genes.

Filtering of gene expression quantification data. For gene expression quantification data, we applied 
the same first two filtering criteria used in filtering of somatic mutation data, which were filtering based on sam-
ple type and filtering based on TCGA annotations. Then, we randomly selected one transcriptome profile when 
a TCGA case had more than one transcriptome profile. Finally, we selected genes at the intersection between 
GRCh38 Ensemble releases 79 and 86.

Weighted gene co-expression network analysis. After filtering, we performed quantile normal-
isation on expression quantification data for each TCGA dataset. This method is based on the concept of a 
quantile-quantile plot extended to multi-dimensions, which results in the same distribution of expression values 
of transcriptomes49.

To identify relatively important gene expression in TCGA datasets, we used the R-package program, Weighted 
Gene Co-expression Network Analysis (WGCNA)14 version 1.51. This program uses a weighted network (matrix 
of connection strengths) calculated from a correlation matrix of expression, rather than unweighted networks 
produced by dichotomizing the Pearson correlation matrix. The program produces a topological overlap measure 
(TOM)50 from the weighted network, which is used to define gene modules (clusters of highly interconnected 
genes) of weighted gene co-expression networks based on their dissimilarities.

https://gdc-portal.nci.nih.gov/
https://gdc-portal.nci.nih.gov/
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To explain the process, genes that had excessive missing values were removed, and outlier samples were 
discarded (Supplementary Fig. S2). Then, we chose parameters that were used in calculation of connection 
strengths based on the approximate scale-free topology criteria. Network topology analysis of possible candidate 
soft-thresholding powers was performed, and a suitable soft-thresholding power was chosen (Supplementary 
Fig. S3 and Supplementary Table S7). Following calculation of the degree of connectivity that is the sum of the 
connection strengths with other network genes, a gene co-expression network was generated, and the genes clus-
tered onto a TOM, based on their dissimilarities. Gene modules were assigned with an option “minimum module 
size” of 30, and genes with high connectivity to each other clustered at the same module (Supplementary Fig. S4). 
In this study, we used signed TOM to make a distinction between positive and negative correlations, and to take 
anti-reinforcing into account51.

Module hub genes were defined to be highly connected genes inside co-expression modules. In selection 
of module hub genes, we intended to assign an arbitrary similar number of genes to each dataset (about 5% of 
genes), and within bounds we restricted the maximum rank of each module considering its size because the 
number of modules varied for each dataset. Then, we applied cut off criteria, which were module membership 
(eigengene-based connectivity kME) ≥ 0.9 and the p-value of module membership ≤ 0.01.

Pan-cancer-wide selected genes (PSGs). For each TCGA dataset, we found genes at the intersection 
between genes associated with somatic mutations and genes that were WGCNA module hubs. Then, we generated 
a set of PSGs by integrating these genes. PSGs were classified into protein-coding and non-coding genes according 
to categorisation of the Ensembl database. Non-coding genes were also classified into four categories (pseudogene, 
short non-coding, long non-coding, and problematic) and their sub categories (Supplementary Table S11).

Protein-protein interaction (PPI) network of protein-coding PSGs (pcPSGs). For pcPSGs, we 
generated a single-depth PPI network and discovered subnetworks. We used information of PPI from STRING 
V1017 with stringent cut off that was a combined interaction score ≥ 900. To find gene clusters and create sub-
networks, we used MCODE15 plugin of Cytoscape52. The program options ‘fluff ’ and ‘K-core = 10’ were used to 
increase the size of subnetworks and filter out clusters lacking a maximally interconnected node of at least 10 
degrees of edges. Because the ‘fluff ’ option was used, genes of clusters were partially overlapped.

Gene Ontology (GO) term enrichment analysis and characteristics investigation of subnet-
works. GO term enrichment analysis of subnetwork genes was performed using DAVID Bioinformatics 
Resources 6.818. We used the results of ‘GOTERM_BP_DIRECT’ with Bonferroni’s adjusted p-value ≤ 0.05. Then 
we summarised GO terms with REVIGO53 that removed redundant GO terms and visualised remaining GO terms 
in a tree map. The p-values of enriched GO terms were used to determine the size of tree map block in REVIGO.

To investigate the characteristics of gene clusters of subnetworks, we performed several analyses. Using the 
empirical cumulative distribution function (ECDF) of ggplot254, an R-package program, expression pattern was 
observed between genes of clusters (entire clusters or specific cluster) and genes that were not in clusters. We 
performed one-tailed Fisher’s exact test for assessing enrichment of known and candidate cancer genes and PCD 
genes in the gene clusters. We set the p-value < 0.05 as a criterion of significant enrichment. The list of known and 
candidate cancer genes was from NCG 5.055, and the list of PCD genes was from KEGG pathway16 and previous 
studies56,57. We considered apoptosis (type 1 PCD), autophagy (type 2 PCD), and programmed necrosis (type 
3 PCD) as PCD, and made programmed necrosis consist of necroptosis and pyroptosis according to a previous 
study58 (Supplementary Data S4).

Summarisation of non-coding PSGs (ncPSGs). Non-coding PSGs (ncPSGs) were categorised into four 
gene type categories and 19 gene types according to RNA annotations in the Ensemble database (Supplementary 
Table S12). To summarise ncPSGs, we performed KEGG pathway term enrichment analysis using DAVID 
Bioinformatics Resources 6.8, and the results of ‘KEGG_PATHWAY’ with Bonferroni adjusted p-value ≤ 0.05. For 
lncRNAs of PSGs, we used LncRNA Ontology19, which is a functional annotation database of lncRNA that shows 
the function as a GO term. The GO terms of lncRNAs were summarised with REVIGO. The frequency of GO 
terms presented in the results of LncRNA Ontology was used to determine the size of tree map block in REVIGO.
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