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Abstract

drug screening that is applicable to undruggable targets.

Atorvastatin, Systems pharmacology

Even when targets responsible for chemoresistance are identified, drug development is often hampered due to the
poor druggability of these proteins. We systematically analyzed therapy-resistance with a large-scale cancer cell
transcriptome and drug-response datasets and predicted the candidate drugs based on the gene expression
profile. Our results implicated the epithelial-mesenchymal transition as a common mechanism underlying resistance to
chemotherapeutic drugs. Notably, we identified /TGB3, whose expression was abundant in both drug resistance and
mesenchymal status, as a promising target to overcome chemoresistance. We also confirmed that depletion of /TGB3
sensitized cancer cells to conventional chemotherapeutic drugs by modulating the NF-kB signaling pathway.
Considering the poor druggability of ITGB3 and the lack of feasible drugs to directly inhibit this protein, we
took an in silico screening for drugs mimicking the transcriptome-level changes caused by knockdown of /TGB3. This
approach successfully identified atorvastatin as a novel candidate for drug repurposing, paving an alternative path to
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Main text

Recent studies in both in vitro cell and in vivo animal
models demonstrated that the epithelial-mesenchymal
transition (EMT), a major cause of metastasis, is closely
associated with chemoresistance [1]. These are consist-
ent with the reports that cancer patients with mesen-
chymal gene signatures have poor prognoses or exhibit
therapy resistance [2]. However, due to the poor drugg-
ability of the EMT-associated proteins responsible for
chemoresistance (e.g., ZEB1/2, SNAI2, SOX4, etc.), it is
important to develop alternative strategies to make
‘undruggable but attractive targets’ druggable.
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To elucidate the mechanisms underlying chemore-
sistance, we examined the gene expression profiles of
804 cancer cell lines, as well as their responses to
anti-cancer drugs, using data from Cancer Therapeu-
tics Response Portal (CTRP) (Additional file 1: Figure
S1A). For each drug, cell lines were classified as resist-
ant or sensitive group, and differentially expressed
genes (DEGs) in each resistant group were selected
(Additional file 1: Figure S1B). EMT was the most
frequently up-regulated phathway in the resistant
group across most chemotherapeutics (26 out of 32
drugs), and targeted drugs (15 out of 20 drugs) (Fig. 1a
and Additional file 1: Figure S1C). Among the down-
regulated genes, ‘immune & inflammatory response’
pathways were highly enriched (Additional file 1:
Figure S1C). It would be noteworthy that upregulation
of interferon signaling contributes to efficacy of chemo-
therapy [3]. Given the previous studies supporting EMT as
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Fig. 1 Epithelial mesenchymal transition as a common mechanism underlying anticancer drug resistance a Top 10 most up-regulated pathways
in the resistance group across chemotherapeutic (left panel) and targeted drugs (right panel) are summarized as the number of drugs by which
the corresponding pathway is significantly regulated. Significantly enriched pathways per a drug were selected through hypergeometric tests
(FDR < 0.05) using the hallmark gene sets from MsigDB. b Clustering of A549 and TD cells together with other lung cancer cell lines from the
resistant (red) and sensitive (green) groups for doxorubicin by Partial Least Square Discriminant Analysis (PLS-DA) based on known EMT-
genes ¢ Programed cell death was examined by Annexin V/7AAD staining after DMSO, etoposide (ETO: 80 uM) and Camptothecin (CPT:
1 uM) 48 h treatment. d Sub G1 population was measure by FACS at 48 h after IR. The quantified sub G1 population was presented as
bar graph (right) e and f Immunoblotting for apoptosis marker such as cleaved caspase 3 and 9 (C.Caspase3 and 9) after doxorubicin
(Doxo) treatment at indicative days (e) or concentration (f), 3-actin and E-cadherin used for an equal loading control and epithelial marker
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Fig. 2 (See legend on next page.)




Hong et al. Molecular Cancer (2018) 17:175

Page 4 of 7

(See figure on previous page.)

Fig. 2 ITGB3-NFkB signaling contributes to acquisition of chemoresistance in mesenchymal lung cancer cell a The genes strongly associated with
chemoresistance and increased expression in TD compared to A549 cell. Known EMT-genes are marked in red. b Distribution of the number of
ITGB3 vulnerable cells (dependency score < — 1) belonging to the sensitive (S) and resistant (R) group for 32 chemotherapeutic and 20 targeted
drugs. (P-value by t-test). ¢ Immunoblotting analysis for cleaved PARP (C.PARP), cleaved caspase 3 and 9 (C.Caspase3 and 9) of TD shCont, shf3 #3
and sh #4 after doxorubicin (Doxo) treatment at indicative days d Immunoblotting analysis for cleaved caspase 3 and 9 (C.Caspase3 and 9) after
Etoposide (ETO, 80 uM) treatment with or without transient transfection of /TGB3 in A549 e Enriched pathways (hypergeometric test, g-
value <0.1) and the median hazard ratio of the member genes in each pathway among the down-regulated genes by /TGB3 depletion.
Hazard ratio is calculated using TCGA LUAD patient dataset, and cancer signaling pathways are marked in red. f Expression change of
NF-kB signaling genes (z-score, normalized log2 fold change) g Fluorescent microscopic images for p65 (Green) in A549 and TD cells.
DAPI (Blue) for nuclear counterstaining, (The scale bars: 50 um) h Immunoblotting analysis for kB and acetylated p64 at lysine 221 (K221) in TD (shCont)
and ITGB3 KD cells, B-actin for equal loading control i Luciferase reporter activity for NF-kB activity in TD (shCont) and ITGB3 KD cells (sh{3#3 or sh3#4) j
Immunoblotting analysis for p65, cleaved PARP, caspase 3 and 9 (CPARP, CCaspase3 and 9) after p65 knockdown with siRNAs (#2 or #3)

a major chemoresistance mechanism [1], we chose to
investigate potential targets among the EMT signature
genes, of which the vast majority were up-regulated by
chemotherapeutics (Additional file 1: Figure S1C). Using
the mesenchymal-type lung cancer cells (A549TD; here-
after, TD) from the A549 lung cancer cell line [4] showing
a clear gene signature of ‘hallmark of EMT’ (Additional
file 1: Figure S1E) and high resistance to etoposide treat-
ment [5] (Additional file 1: Figure S1F), we showed the
expression profiles of TD cells cluster together with those
of doxorubicin-resistant cell lines, whereas the parental
line A549 with the sensitive cells (Fig. 1b). As predicted,
high resistance of TD cells to other conventional chemor-
adiotherapies such as etoposide (ETO), camptothecin
(CPT) (Fig. 1c), ionizing radiation (IR) (Fig. 1d) and doxo-
rubicin (Fig. le-f), all of which trigger apoptosis by indu-
cing DNA damage.

For prediction of genes for chemoresistance, we de-
fined the frequency of a gene in the up-regulated DEGs
as its ‘chemoresistance score’; this value was strongly
correlated with the degree of overexpression in TD
(Spearman correlation = 0.44, P < 0.0004, Fig. 2a). Two
genes that satisfied all three of the criteria; i) genes fre-
quently represented in the up DEGs of the 32 chemo-
therapeutic drugs; ii) genes overexpressed in TD cells;
and iii) EMT-related genes were ITGB3 and CTGF
(Fig. 2a). Of note, the role of CTGF in chemoresistance
and its antagonism for chemosensitization has been
determined [6]. In particular, we found that the ICs, of
doxorubicin is positively correlated with the ITGB3
expression level (Additional file 1: Figure S2A). Ana-
lyzing a genome-scaling RNAi screening for 501 cancer
cells, Project Achilles [7], 105 cells (21%) showed
significant dependency on ITGB3 (Additional file 1:
Figure S2B), which was among the top ~10% vulner-
able genes (Additional file 1: Figure S2C). Moreover,
ITGB3-dependency was more significant in the resist-
ant cells for most chemotherapeutic drugs (Fig. 2b and
Additional file 1: Figure S2D). Such trend was most
evident in eight chemotherapeutic drugs (Fisher’s method
P<1.1x 10" °, Additional file 1: Figure S2E). Consistently,

loss of ITGB3 in TD cells (shB#3 and shp#4) (Additional
file 1: Figure S2F) increased sensitivity to doxorubicin
treatment (Fig. 2c and Additional file 1: Figure S2G-I).
Similar results were obtained with CPT, IR, and ETO
(Additional file 1: Figure S2J-L). Given that expression
of ITGB3 was sufficient to restore the chemoresistance
of shp#3 TD cells (Additional file 1: Figure S2M) and
even increase the chemoresistance of A549, the paren-
tal cell line of TD (Fig. 2d), we conclude that ITGB3 ex-
pression is solely sufficient to induce chemoresistance.
Among the down-regulated pathways by ITGB3 deple-
tion, NF-kB was the signaling pathways most strongly
associated with patients’ survival (Fig. 2e). Given that
depletion of ITGB3 down-regulated NF-kB-dependent
survival factors (IL8, XIAP, PLAU, BIRC2/3, BCL2, or
BCL2L1I), and induced negative feedback regulators such
as NFKBIA and TNFAIP3 (encoding IkBa and A20 deu-
biquitinase, respectively), we hypothesized that inhib-
ition of NF-kB signaling would be a key process required
for cell sensitization (Fig. 2f and Additional file 1: Figure
S3A). Consistently, highly chemoresistant TD cells
exhibited higher levels of NF-kB activity than A549 cells,
as determined by nuclear p65 localization (Fig. 2g and
Additional file 1: Figure S3B), the protein level of IxBa
(Additional file 1: Figure S3C) and NF-«B reporter activity
(Additional file 1: Figure S3D). Furthermore, loss of
ITGB3 markedly attenuated NF-kB activity, as determined
by NF-kB reporter activity (Fig. 2h) and acetylation of p65
(which is critical for its DNA-binding affinity) (Fig. 2i) as
well as the level of nuclear p65 (Additional file 1: Figure
S3E-F). In adverse, ectopic expression of ITGB3 restored
NF-kB activity, as determined by acetylation of p65 and
level of IkB (Additional file 1: Figure S3G). Together, these
data indicate that ITGB3 expression is closely associated
with NF-kB activity. According to this prediction that
elevation of NF-kB activity by ITGB3 expression could be
a primary cause of the elevated hazard ratio (Fig. 2e), we
assessed the cytotoxicity of doxorubicin following abro-
gation of NF-«kB activity. Depletion of p65 with siRNA,
was sufficient to sensitize cells to doxorubicin treat-
ment (Fig. 2j), suggesting that the increase in NF-«xB
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Fig. 3 Atrovastatin sensitizes chemotherapy through modulating NF-kB a CMap approach to identify chemosensitizer drugs using two different
signatures: i) down-regulated genes by ITGB3 depletion, and ii) the intersection of i) and NF-kB pathway genes b the candidate drug list predicted by
the two signatures. Atorvastatin was commonly predicted by both signatures. ¢ and d Immunoblotting analysis for cleaved caspase 3 or (CCaspase3
or C.Caspase9) at indicative dose ¢ of atorvastatin (ATV) or Days (d, with 0.1 uM of ATV) with doxorubicin (Doxo). a-tubulin or B-actin for equal loading
control e Light microscopic images of TD cells with or without atorvastatin (ATV, 1 uM) after doxorubicin treatment (Doxo) (top), Graphical
presentation of cell viability (bottom) f Flow cytometry for Annexin V staining at 24 h after indicative dose of Doxorubicin (Doxo) with 0.1 uM of ATV
pretreatment (top), Graphical presentation of apoptotic cells (bottom) g Luciferase reporter activity for NF-kB activity in TD after indicative
dose of atorvastatin (ATV) h Immunoblotting analysis for ITGB3, BCL-xL and IkB after indicative dose of atorvastatin (ATV) treatment in TD

cells, B-actin for equal loading control
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activity mediated by ITGB3 expression is responsible
for acquisition of chemoresistance.

To predict chemosensitizing drug candidates, we
leveraged drug-induced transcriptome data from the
Connectivity Map (CMap) and searched for drugs with
expression signatures similar to those of ITGB3 depletion
or NF-«B signaling inhibition (Fig. 3a). Among the candi-
date drugs, atorvastatin (ATV) was the only drug identi-
fied based on both ITGB3 and NF-kB gene signatures
(Fig. 3b and Additional file 1: Figure S4A-B). As predicted,
pretreatment with ATV significantly sensitized TD cells to
doxorubicin (Fig. 3c). It is noteworthy that, despite clear
induction of ITGB3 by treatment of doxorubicin, com-
bined treatment of ATV and doxorubicin increased the
rate of cell death (Fig. 3d), decreased cell viability (Fig. 3e)
and apoptotic cell death (Fig. 3f). The increase in chemo-
sensitivity following ATV treatment occurred in parallel
with a reduction in NF-«B reporter activity (Fig. 3g). As
similar as induction of NFKBIA (encoding IkBa) and
suppression of BCL2L1 (encoding BCL-xL) by /TGB3 de-
pletion (Additional file 1: Figure S3A), which may account
for the decrease in NF-«B activity as well as pro-survival
activity, short-course ATV treatment increased expression
of IxBa and decreased the level of BCL-xL (Fig. 3h), sug-
gesting that attenuation of the NF-kB—dependent pro-sur-
vival pathway by ATV leads to chemosensitization.
Consistently, H460 cancer cells with mesenchymal gene
expression (Additional file 1: Figure S5A) and high /TGB3
and IL6 expression (Additional file 1: Figure S5B), which
was repressed by loss of ITGB3 (Additional file 1: Figure
S5C and D) became more chemosensitive by ATV treat-
ment (Additional file 1: Figure S5F), lowing NF-kB activity
(Additional file 1: Figure S5E). In other hand, H358
cancer cells with epithelial gene expression (Additional
file 1: Figure S5G) were likely to acquire chemoresistance
(Additional file 1: Figure S5H) and increased NF-«B acti-
vation (Additional file 1: Figure S5I) by ITGB3 ectopic
expression, which were weakened by ATV treatment
(Additional file 1: Figure S5H and I). Conversely, depletion
of ITGB3 promoted chemosensitivity in H358 (Additional
file 1: Figure S5J).

Most targets responsible for acquired chemoresistance
in cancers, identified during extensive molecular mechan-
istic studies, remain undrugged [8] due to poor druggabil-
ity or possible side effects by direct inhibition. Thus, we
took advantage of CMap approach based on a large-scale
drug-induced transcriptome dataset and identified ATV,
one of the world’s best-selling drugs for hyperlipidemia, as
a candidate drug for abrogating the pro-survival and
chemoresistance effect of ITGB3; specifically, we showed
that the transcriptional profile of ATV-treated cells was
similar to that of ITGB3 knockdown. Consistently, ATV
has a radiosensitizing effect on prostate cancer cells [9].
Although the inhibitory effect of STATINs on NF-«B is
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varied markedly [10], our predictive analysis identified
ATV as a top-ranking candidate, strongly validating our
data-driven approach.

Conclusions

By integrating pharmacogenomics and chemical gen-
omic data, we successfully identified both a therapeutic
target and a novel chemosensitizing drug to overcome
resistance to multiple chemotherapeutic drugs. Our ap-
proach can be applied to a wide range of targets beyond
those associated with EMT, paving an alternative path to
drug discovery even for undruggable targets.

Additional file

Additional file 1: Supplementary Materials, Methods, and Figures
(Figure S1-S5). (PDF 5239 kb)
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