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Peptidoglycan binding protein 
(PGBP)-modified magnetic 
nanobeads for efficient magnetic 
capturing of Staphylococcus aureus 
associated with sepsis in blood
Jaewoo Lim1,2, Jongmin Choi3, Kyeonghye Guk1,2, Seong Uk Son1, Do Kyung Lee3,  
Soo-Jin Yeom4, Taejoon Kang  1,2, Juyeon Jung1,2 & Eun-Kyung Lim1,2

Peptidoglycan-binding protein-modified magnetic nanobeads (PGBP-MNBs) were prepared for efficient 
magnetic capturing of Staphylococcus aureus (S. aureus), which is associated with sepsis, using the 
binding affinity of PGBP for the peptidoglycan (PG) layer on S. aureus. These PGBP-MNBs can simply 
capture S. aureus in plasma within 1 hr or even 15 min. Importantly, they also can capture various types 
of Gram-positive bacteria, such as Bacillus cereus and methicillin-resistant and methicillin-susceptible 
S. aureus (MRSA and MSSA). We believe that PGBP-based systems will be used to develop diagnostic 
systems for Gram-positive bacteria-related diseases.

Staphylococcus aureus (S. aureus) is a widely distributed Gram-positive pathogen that causes many seri-
ous diseases in humans, such as local purulent infections, pneumonia and sepsis. Some of these diseases are 
life-threatening clinical syndromes associated with significant patient morbidity and mortality1–11. Therefore, 
rapid and sensitive detection of S. aureus has become crucial for improving patient survival rates12–17. Because S. 
aureus is hard to detect at low concentrations (e.g., ≤100 CFU/mL), long reaction times are usually needed before 
analysis. The most commonly used methods are culture-based assays, which are often composed of a series of 
steps, including selective culture enrichment, differential plating, and biochemical/serological testing. However, 
these assays are slow, expensive, time consuming and labor intensive because the assay procedure is complicated 
and requires amplification or enrichment of S. aureus in the sample18–21. In this study, we developed a novel con-
centration platform functionalized with peptidoglycan-binding proteins (PGBPs) for expedient capturing and 
enrichment of Gram-positive S. aureus.

Results and Discussion
The surface of the MNBs are modified with PGBP, enabling them to specifically recognize and strongly bind to 
the peptidoglycan (PG) layer on S. aureus (Fig. 1). PG is an essential component of the cell wall of all bacteria 
and is especially abundant in Gram-positive bacteria, in which it accounts for approximately half of the cell wall 
mass. It is well-known target for not only antibiotics but also the host immune response through recognition by 
pattern recognition receptors, including PGBPs22–31. Thus, PGBPs play a role in the recognition of PG in bac-
teria with nanomolar affinity. Thus, we developed MNBs modified with PGBP (PGBP-MNBs), and its PGBP is 
able to recognize S. aureus by binding to its PG layer like an antibody32–34. Furthermore, S. aureus captured by 
PGBP-MNBs was enriched by a magnetic field, allowing further analysis of whether a patient is infected with 
pathogens (S. aureus)35–42. We purified PGBP with a molecular weight of approximately 25 kDa, corresponding to 
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approximately 421 amino acid. We also tagged PGBP with green fluorescent protein (GFP) to impart green fluo-
rescence (Fig. 2a). The affinity of PGBP for the PG layer of Gram-positive S. aureus bacteria, which was measured 
as the binding affinity (KD), was determined using a BLItz system. The result showed that the KD was 6.49 nM 
(Fig. S2). In addition, we visually confirmed the specific binding affinity of PGBP for PG layer from S. aureus 
by fluorescence microscopy analysis. S. aureus bacteria stained with red fluorescent reagents were incubated 
with PGBP (green fluorescence). After 1 hr, the bacteria were purified by centrifugation to eliminate unbound 
PGBP and then were re-suspended in buffer containing 10% plasma, similar to physiological blood conditions 
in humans (Fig. 2b). As shown in Fig. 2c, the red and green fluorescence signals were colocalized, indicating that 
PGBP was bound to S. aureus. It was confirmed in fluorescence spectra as well that PGBP/S. aureus showed both 
green and red fluorescence intensities (Fig. S3). PGBP-MNBs were prepared for magnetic capturing of S. aureus 
at room temperature. The bacteria were then enriched by applying a magnet, as Ni-NTA was immobilized on the 
MNBs along with PGBP43–46. Histidine (His)-tags on PGBP act as a chelating agent and form chelate complexes 
with nickel (Ni) ions from Ni-NTA, which offer vacant electron orbitals to form coordinate bonds. The size of the 
MNBs before PGBP binding was approximately 900 nm, and their size after PGBP binding increased to approxi-
mately 1 μm (Fig. 3a). After reaction of the PGBP-MNBs with S. aureus in buffer containing 10% plasma for 1 hr, 
the resulting PGBP-MNBs/S. aureus complex was dropped on a glass slide, and then a magnet was placed under 
this glass slide. The complex was magnetically manipulated by the external magnetic field, showing a yellow fluo-
rescence signal overlapped with both the red and green fluorescence signals (Fig. 3b,c). In addition, we recorded 
fluorescence spectra of the PGBP-MNBs/S. aureus complex at excitation wavelengths of 488 and 588 nm using 
a multimode-microplate reader to confirm the binding capacity of PGBP-MNB for S. aureus. Free PGBP, MNBs 
and S. aureus were also measured in the same manner as controls (Fig. S3). The PGBP-MNB/S. aureus complex 
showed fluorescence intensities corresponding GFP, which is similar to free PGBP (Figs 3d and S3). In addition, 
at the excitation wavelength of 588 nm, PGBP-MNBs/S. aureus exhibited fluorescence signals corresponding to S. 
aureus. As expected, as the reaction time increased, the fluorescence intensity under 588 nm excitation increased, 
indicating that the amount of S. aureus captured by the PGBP-MNBs was increased (Figs 3e and S3). Therefore, 
the ability of PGBP-MNBs to capture S. aureus could increase with the reaction time. Furthermore, for quick 
acquisition of S. aureus by magnetic concentration using these PGBP-MNBs, we evaluated the capturing abilities 

Figure 1. Preparation of peptidoglycan binding protein (PGBP)-modified magnetic nanobeads (PGBP-MNBs) 
for the efficient capturing of Gram-positive Staphylococcus aureus (S. aureus).
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of S. aureus by the PGBP-MNBs with different reaction time and S. aureus concentrations by real-time PCR. First, 
S. aureus bacteria at concentrations of 105.7, 103.7 and 101.7 CFU/mL (according to the optical density at 600 nm) 
were incubated with PGBP-MNBs for various reaction times (0 min, 15 min, 30 min and 1 hr). Subsequently, 
the PGBP-MNBs magnetically captured S. aureus by forming PGBP-MNBs/S. aureus complexes, and Ct values 
and concentrations of the captured S. aureus were measured using real-time PCR46–50. As mentioned above, the 
longer the reaction time was, the higher the capturing ability (Fig. 4). After the PGBP-MNBs were mixed with 
S. aureus for 1 hr, a point magnet easily attracted S. aureus bacteria because their cell surfaces were bound to the 
PGBP-MNBs. Even at a S. aureus input concentration of 101.7 CFU/mL, approximately 101.38 CFU/mL S. aureus 
bacteria were captured by the PGBP-MNBs (Fig. 4b). Importantly, the PGBP-MNBs still showed sufficient abil-
ity as capturing probes at a short reaction time of 15 min. We further evaluated whether the PGBP-MNBs were 
capable of detecting Gram-positive bacteria regardless of species (Fig. 5). We chose S. aureus, Bacillus cereus, 
methicillin-susceptible Staphylococcus aureus (MSSA) and methicillin-resistant Staphylococcus aureus (MRSA) as 
Gram-positive bacteria with a thick PG layer as Gram-positive bacteria18,51,52. Notably, MRSA is one of the most 
common resistant S. aureus strains in hospitals. S. aureus and B. cereus were obtained from the Korean Collection 

Figure 2. (a) The expression of PGBP analyzed by SDS-PAGE. (b) Schematic illustration of S. aureus in human 
plasma (10% plasma in PBS) captured by PGBP, and (c) its fluorescence image after co-incubation with S. aureus 
(Red) and PGBP (Green) for 1 hr at room temperature.

Figure 3. (a) Size measurement of MNBs and PGBP-MNBs by DLS analysis. (b) Illustration of magnetic 
separation of S. aureus using PGBP-MNBs. After binding with S. aureus and PGBP-MNBs for 1 hr, and (c) its 
fluorescence microscopic image (S. aureus: red and PGBP: green). Fluorescence spectra of PGBP-MNBs/S. 
aureus (d) at 488 nm (excitation) and (e) at 588 nm (excitation) under different reaction time (Circles: 1 hr and 
triangles: 2 hr), respectively.
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for Type Cultures (KCTC), and clinically isolated MRSA (#77, #78, #79 and #80) and MSSA (#85, #86, #87 and 
#88) were obtained from BioNano Health Guard Research Center (H-GUARD). Bacteria (103.7 CFU/mL) were 
separately mixed with PGBP-MNBs for 1 hr at room temperature. After incubation, the unbound bacteria were 
removed by magnetically assisted washing, and then the captured bacterial concentrations were measured by 
real-time PCR assay. The data revealed the great efficacy of the PGBP-MNBs in magnetic capturing of approxi-
mately 102.8~104 CFU/mL Gram-positive bacteria with a capture efficiency of about 81.67%53. These results con-
firmed that PGBP-MNBs could be used universally to efficiently detect most Gram-positive bacteria.

Conclusions
We developed PGBP-MNB as a magnetic capturing probe of Gram-positive S. aureus, which is associated with 
sepsis, and confirmed its ability to capture these bacteria within just 15 min at room temperature. In particular, 
since there is a PG layer on Gram-positive bacteria, the PGBP-MNBs can capture not only S. aureus but also B. 
cereus, MRSA and MSSA. Notably, because it uses a protein (PGBP) that binds universally to Gram-positive bac-
teria, this probe (PGBP-MNBs) has increased practicality compared to probes that increase selectivity by using 

Figure 4. Real-time PCR analysis of S. aureus magnetically captured using PGBP-MNBs at various bacterial 
concentrations (Input: 105.7, 103.7 and 101.7 CFU/mL) and reaction times (0 min, 15 min, 30 min and 1 hr). (a) 
Average threshold cycle value (Ct) of the captured S. aureus and (b) their corresponding output concentrations.

Figure 5. The concentrations of various types of bacteria (103.7 CFU/mL) magnetically captured using 
PGBP-MNBs after 1 hr of incubation, as determined by real-time PCR (S. aureus: Staphylococcus aureus, B. 
cereus: Bacillus cereus, MSSA: methicillin-susceptible Staphylococcus aureus and MRSA: methicillin-resistant 
Staphylococcus aureus). Peptidoglycan-binding protein-modified magnetic nanobeads (PGBP-MNBs) were 
prepared for efficient magnetic capturing of Staphylococcus aureus (S. aureus), which is associated with sepsis, 
using the binding affinity of PGBP for the peptidoglycan (PG) layer on S. aureus.
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an antibody that binds to a specific bacterium. Furthermore, we expect this PGBP-based capture platform to be 
applicable to diagnostic systems for bacteria-related diseases.

Experimental Section
Chemicals. We purchased HisPur™ Ni-NTA Magnetic Beads and BacLight Red Bacterial Stain from 
THERMO FISHER SCIENTIFIC (USA). SYBR Green PCR master mix was purchased from QIAGEN 
(Germany). Dulbecco’s phosphate buffered saline (DPBS, 1X) was purchased from GIBCO (Life Technologies). 
Human plasma (pooled normal, K2 EDTA) was purchased from INNOVATIVE RESEARCH INC. (USA). A 
Mini-BEST bacterial genomic DNA extraction kit was purchased from TAKARA (Japan). Primer sets for bacte-
rial DNA amplification by real-time PCR were purchased from BIONEER INC. (Korea), and their sequences are 
summarized in Table S1.

Cloning, expression and purification of PGBP. We constructed a green fluorescence protein 
(GFP)-tagged peptidoglycan binding protein (PGBP) vector to express the fusion protein of PGBP and GFP 
(Fig. S1). The prepared expression vector was transformed into BL21 (DE3) component Escherichia coli express-
ing the recombinant protein, and the obtained transformant was inoculated into LB liquid medium supplemented 
with 50 μg/mL of ampicillin and then cultured at 37 °C until the optical density (OD) at 600 nm reached 0.6. After 
adding 1 mM isopropyl β-D-1-thiogalactopyranoside (IPTG), the cells were further cultured with shaking for 4 hr 
to obtain the recombinant protein (PGBP). To extract the expressed recombinant protein, 20 mM Tris-Cl (pH 
8.0) and 0.2 M NaCl buffer solution was added to the E. coli cells, which were then recovered by centrifugation to 
suspend the cells and lysed using an ultrasonicator. The lysate was dissolved in an 8 M urea solution for efficient 
refolding of the insoluble protein, was subjected to metal affinity chromatography using 6X histidine as a metal 
affinity tag and was dialyzed against refolding solution (50 mM Tris-HCl (pH 8.5), 1 M arginine, 2 mM EDTA, 
5 mM cysteamine, and 0.5 mM cystamine) at 4 °C for 48 hr under stirring. After sufficient refolding, the buffer 
of the recombinant protein was exchanged with PBS (pH 7.4) using ultrafiltration (MWCO: 10 KDa) and was 
concentrated to 1 mg/mL.

Bacterial culture and harvest conditions. The bacterial strains of Staphylococcus aureus (KCTC: 1621), 
Bacillus cereus (KCTC: 3624), methicillin-resistant Staphylococcus aureus (MRSA) (#77, #78, #79, and #80) and 
methicillin-susceptible Staphylococcus aureus (MSSA) (#85, #86, #87, and #88) were supplied by the Korean 
Collection for Type Cultures (KCTC), KRIBB (Korea) and BioNano Health Guard Research Center (H-GUARD) 
(Korea). All bacterial stains were cultured with LB broth (USA) at 37 °C. The bacterial concentration of S. aureus 
was determined by measuring the optical density (OD) at 600 nm (an OD600 of 1.0 Au = 8.8 × 108 CFU/mL).

Binding capacity of PGBP for S. aureus (PGBP/S. aureus). We measured the binding affinity between 
PGBP and S. aureus using a biolayer interferometry-based biosensor BLItz system (FORTEBIO). PG from S. 
aureus was purchased from SIGMA-ALDRICH. PGBP loaded on Ni-NTA biosensors to bind with 6X histidine 
of PGBP and Ni-NTA, equilibrated in PBS for 1 min to establish a stable baseline, and then dipped into 4uL of PG 
from S. aureus (0 ~ 50 nM) to obtain the association curve for 300 s. The dissociation curve was obtained for 300 s 
using dipping holder. Afterwards, Binding affinities were calculated by fitting the curves using BLItz software 
(Fig. S2). We also performed binding capacity of PGBP against S. aureus in a same manner. Moreover, to vis-
ually confirm the binding of PGBP for S. aureus (107 CFU/mL), we used a red fluorescent dye (BACLIGHT RED 
BACTERIAL STAIN) for bacterial staining (Ex: 581–596 nm/Em: 644 nm) (THERMO FISHER SCIENTIFIC). 
Then, bacteria were co-incubated with PGBP (1 mg/mL, 20 µL) for 1 or 2 hr at 37 °C. After incubation, unbound 
PGBPs were washed with PBS three times by centrifugation at 10,000 rpm for 10 min. The PGBP/S. aureus com-
plex was observed by Jaewoo Lim using a fluorescent Microscope (EVOS Cell Imaging Systems, THERMO 
FISHER SCIENTIFIC).

Preparation of PGBP-magnetic nanobeads (PGBP-MNBs). Ni-NTA magnetic beads (8 µL, 12.5 mg/
mL) and 10 µL of PGBP (1 mg/mL) (the ratio of magnetic beads to PGBP was 1:0.1) were mixed in PBS (1 mL) 
and incubated overnight at 4 °C. Then, unbound PGBP was removed from the PGBP-MNBs by washing three 
times with PBS using a magnetic tube rack, and the PGBP-MNBs were redispersed in PBS. The PGBP-MNBs were 
stored at −20 °C before use.

Ability of PGBP-MNBs to capture S. aureus (PGBP-MNBs/S. aureus). We prepared 101.7~105.7 CFU/
mL S. aureus in human plasma solution (10% human plasma in PBS). Then, 1 mL of PGBP-MNBs (0.1 mg/mL) 
were injected into the bacterial sample, and then they (PGBP-MNBs/S. aureus) mixed for 15 min, 30 min and 1 hr, 
respectively. To remove unbound bacteria, the samples were washed three times with PBS using magnetic sepa-
ration methods. Additionally, we confirmed the capturing ability using various Gram-positive bacteria, including 
S. aureus, B. cereus, MRSA and MSSA. In these experiments, each type of bacteria (103.7 CFU/mL) was separately 
mixed with the PGBP-MNBs (1 mL, 0.1 mg/mL) for 1 hr, and then unbound bacteria were removed by using 
magnetic separation methods.

Confirmation of the capture of S. aureus captured by PGBP-MNBs (PGBP-MNBs/S. aureus). To 
confirm the capture ability of the PGBP-MNBs, we conducted flow cytometry analysis and real-time PCR. Flow 
cytometry analysis was performed using a FACSCalibur instrument (BECTON DICKINSON AND CO., USA) 
and software (WINMD) for data analysis. PGBP was tagged with GFP to impart green fluorescence, and S. 
aureus was stained with a red fluorescence dye. In addition, we carried out real-time PCR using a CFX96 Touch™ 
real-time PCR detection system (BIO-RAD LABORATORIES, USA) to measure the concentration of S. aureus 
captured by the PGBP-MNBs (PGBP-MNBs/S. aureus). The primer sets for amplification of S. aureus genomic 
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DNA and control (16s rRNA) primer sequences were described in previous papers. PCR conditions were in 
accordance with the product manual of QuantiTect SYBR Green PCR kits (QIAGEN, Germany). We also meas-
ured the concentrations of the other types of captured bacteria (B. cereus, MRSA and MSSA) by real-time PCR 
in the same manner.
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