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Moisture Effect on Particulate 
Matter Filtration Performance using 
Electro-Spun Nanofibers including 
Density Functional Theory Analysis
Han-Jung Kim1, Seon Joo Park2, Dong-Ik Kim3, Sanghyuck Lee2, Oh Seok Kwon2,4 & 
Il Ku Kim5,6

In this study, we use density functional theory (DFT) calculations to investigate the effect of moisture 
on the performance of three types of nanofiber (NF)-based air-filter media prepared by electrospinning 
polyvinyl alcohol, polyvinylidene fluoride, and polyacrylonitrile (PAN). Based on the DFT calculations of 
the intermolecular interactions between the NF-based filter media and water molecules, the PAN-NF 
filter is expected to exhibit the best performance in the wet state. Experiment studies also successfully 
demonstrate that the PAN-NF filter medium has better performance in the filtration of particulate 
matter (PM) than a commercial semi-high efficiency particulate air filter under wet conditions, 
and these results are in good agreement with the DFT calculation. The PAN-NF filter shows better 
performance because of its hydrophilic nature and the relatively low thickness the filter medium that 
allowed fast recovery of its PM-filtration performance.

The pollution of air by particulate-matter (PM) is a serious concern in developing countries because of rapid 
industrialization and population growth1–3. Coarse PM measuring less than 10 μm in diameter, also known as 
PM10, originates primarily from road dust, agricultural dust, construction sites, mining operations, and sim-
ilar activities. Fine PM measuring less than 2.5 μm in diameter, known as PM2.5, is mainly caused by burning 
fuels and combustion. When PMs are inhaled by the human body, they can cause serious problems in the heart 
and lungs4,5. Therefore, PM was recently designated as a Group 1 carcinogen by the International Agency for 
Research on Cancer (IARC) of the World Health Organization (WHO). Guidelines were established to limit 
average exposure to a maximum of 10 μg/m3 of PM2.5 per year, and a maximum of 25 μg/m3 over a 24-h period6,7. 
Consequently, many studies have been conducted on the capture and removal of PM such as electric precipi-
tators8, catalytic filters9, cyclonic separators10, wet scrubbers11, and fabric filters12–15. Among them, nanofiber 
(NF)-based air-purification (or filtration) technology has attracted particular interest in recent years owing to its 
high performance (low pressure drop, high filtration efficiency, and dust-holding capacity), durability (service 
life, high-temperature stability, and flexibility), and high productivity (large-area production and mass produc-
tion)16,17. To support the technology, different types of air filters have been developed using NFs of polymers such 
as polyvinyl alcohol (PVA), polyvinylidene fluoride (PVDF), and polyacrylonitrile (PAN)16–18. To date, much of 
investigations (structural and chemical properties; diameter, packing density, pore size, specific surface area, etc.) 
has been carried out to improve of NF performances in terms of changing fabrication conditions16–18. However, 
studies of polymer NF-based air filters are just considered on less moisture ambient19–21. In spite of practical use 
on less moisture ambient, a great demand is emerging for development of washable filters that can be reused after 
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washing12,22,23. Therefore, it is inevitable to investigate the filtration performance and durability of NF-based air 
filter media in high-humidity environments before they can be used.

Our motivation of this study is establishing foundation of the development of NF-based air filter media 
that can effectively capture PM even in high moisture environments. We fabricated three different types of 
polymer-NF-based air filter media by electrospinning method and investigated the changes in filtration per-
formance in the wet state. Furthermore, the intermolecular interactions between the NF-based filter media and 
water molecules were analyzed by density function theory (DFT) calculations and compared to the experimen-
tal results. Compared with the commercial semi-high-efficiency particulate air (semi-HEPA) filter media, the 
NF-based filter media were observed to show relatively fast performance recovery. In particular, the PAN-NF 
filter medium showed superior performance in recovery of its filtration capability.

Results and Discussion
Figure 1(a–f) show the DFT calculation results for PVA, PVDF, and PAN molecules (length: 2 nm) with or with-
out H2O molecules to predict the effect of moisture. The geometry and energies of PVA, PVDF, and PAN were 
optimized using the B3LYP/6–31 G* method24–26. The results of single- and small-molecule DFT calculations of 
all NFs are also provided in Fig. S1 (see Supporting Information). The results of dipole-moment (DPM) calcula-
tions are summarized in Table 1. It should be noted that our calculated DPM of a single molecule is quite similar 
to the recently reported value27. As shown in Fig. 1(a,b), the PVA and PVDF molecules appear to have a linear 
shape by increasing of molecular weight. However, as shown in Fig. 1(c), the external shape of the PAN molecule 
becomes twisted as the molecular weight increases. A comparison of the molecular shapes and DPMs shows 
that the increase in DPM of a linear shape NF molecule (1.67 to 23.62 D for PVA; 2.06 to 16.8 D for PVDF) is 

Figure 1. DFT calculation results for (a) 2 nm linear PVA molecule without H2O, (b) 2 nm linear PVDF 
molecule without H2O, (c) 2 nm twisted PAN molecule without H2O, (d) 2 nm PVA molecule with 20 H2O 
molecules, (e) 2 nm PVDF molecule with 20 H2O molecules, and (f) 2 nm PAN molecule with 20 H2O 
molecules. FTIR results for (g) PVA-NF filter medium, (h) PVDF-NF filter medium, and (i) PAN-NF filter 
medium.

PVA PVDF PAN

Single molecule 1.67 D 2.06 D 3.91 D

Small molecule 6.09 D 5.41 D 9.61 D

2 nm molecule 23.62 D 16.80 D 9.43 D

Single molecule + 1 H2O molecule 2.45 D 2.76 D 6.02 D

Small molecule + 4 H2O molecules 4.29 D 11.07 D 6.67 D

2 nm molecule + 20 H2O molecules 19.55 D 15.40 D 6.22 D

Table 1. Dipole moments (DPMs) of PVA, PVDF, and PAN molecules with or without H2O for single 
molecules, small molecules, and 2 nm-long molecules.
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greater than a twisted NF molecule (3.91 to 9.43 D for PAN); this difference originates from the molecular struc-
ture. Interestingly, the addition of a H2O molecule in the DFT calculation shows dramatic differences between 
PVA, PVDF, and PAN. For PVA and PVDF, the H2O molecules are not fully distributed in the PVA and PVDF 
structures, and the distance between H2O and NFs are 3.6 Å for PVA and 3.4–4.1 Å for PVDF. In PAN, however, 
the H2O molecules are fully distributed and having an average distance of 3.0 Å (Fig. S1). This would be a strong 
supporting point in water droplet experimental results and will be discussed further. From Table 1, the increase 
in DPM resulting from the addition of a H2O molecule varies widely between PVA, PVDF, and PAN. For single 
molecules (PVA, PVDF, and PAN) with a single H2O molecule, PAN shows the highest DPM of with 6.02 D, while 
the DPMs of PVA and PVDF is remaining in the range of 2.45–2.76 D. However, when the molecular weight and 
number of H2O molecules are increased for PVA, PVDF, and PAN, the increase in DPM follows the same trend 
as that shown in the DFT calculations without H2O molecules. However, regardless of the presence or absence of 
H2O molecules, the DPMs of PVA and PVDF are still higher than that of PAN, which suggests that the effect of 
water or moisture in PVA and PVDF is insignificant. However, in the case of PAN, the values of DPM decreases 
from 9.61 to 6.67 D (small-molecule PAN without and with H2O) and from 9.43 to 6.22 D (2 nm PAN without 
and with H2O). Therefore, this also suggests that water or moisture can be uniformly distributed in the PAN sys-
tem by absorption even if it consists of small molecules or has higher molecular weight.

Figure 1(g–i) show the Fourier transform infrared (FTIR) analysis results of the chemical composition of 
PVA-NF, PVDF-NF, and PAN-NF air-filter media, respectively. In Fig. 1(g), the peak corresponding to O–H 
stretching lies between 3,200 and 3,550 cm–1, the signal corresponding to the C–H alkyl group lies between 2,800 
and 3,000 cm−1, and the peak at 1,737 cm−1 is attributed to C–O stretching28. In Fig. 1h, the two peaks at 2,977 
and 3,022 cm−1 are related to the CH2 asymmetric and symmetric vibration, while the peak at 1,404 cm−1 is attrib-
uted to CH2 wagging vibration; the peaks at 840 and 882 cm−1 are attributed to C–C–C asymmetrical stretching 
vibration and C–F stretching vibration, respectively29. Finally, in Fig. 1(i), the peak at 2,930 cm−1 corresponds to 
CH2 vibration of the hydrocarbon, and the peak at 2,245 cm−1 corresponds to C≡N stretching of the acrylonitrile 
unit in the polymer chain30. From these experimental results, it has confirmed that the three types of filter media 
were produced as intended.

Figure 2(a) shows a comparison of the PM2.5-removal efficiency and pressure drop of the PAN-NF fil-
ter medium and three commercial air filter media (car cabin filter, semi-HEPA filter, and dust mask) in a 
low-moisture ambient. Fig. S2 shows a schematic of the electrospinning process and a photo of a fabricated PAN 
NF-based filter medium. It should be noted that the PM2.5-removal efficiency is increased as the thickness of the 
NF-based filter medium increasing. In general, it is widely accepted that a filter’s PM-filtration performance can 
be easily improved by increasing of thickness of the NF-based filter medium or by reducing the pore size of the 
NF-based filter medium. In the experiment, smoke was generated when burning incense was used as the PM 
source. The smoke particles varied from 0.3 to 10.0 μm in diameter (Fig. 2(b)), but most of them were in the 

Figure 2. (a) Comparison of PM2.5-removal efficiency and pressure drop across PAN-NF filter medium and 
commercial filters (semi-HEPA filter, dust mask, and car cabin filter). (b) Size distribution of incense smoke 
particles as PM2.5 source. (c) Comparison of the thickness of PAN-NF filter and semi-HEPA filter.
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range of <1.0 µm and were thus categorized as PM2.5. In general, it is widely accepted that a filter’s PM-filtration 
performance can be easily improved by increasing the thickness of the NF-based filter medium27,31. In our study, 
the thickness of the electro-spun NFs on the polymer mesh substrate was controlled by extending the electro-
spinning duration and monitoring the pressure drop as an indicator of the PM-filtration performance. More 
importantly, the thickness of the NF-based filter medium is relatively thin compared to that of a conventional 
filter medium27,31,32. In Fig. 2(c), the thickness of the PAN NF filter medium (including the polymer mesh sub-
strate) was about 330 μm, and it showed superior performance (PM2.5-removal efficiency of 93.92% and pressure 
drop of 162 Pa) that was comparable to that of the commercial semi-HEPA filter medium. It is important to note 
that this performance was attained with a relatively thin PAN NF-based filter medium, whose thickness is 49.2% 
that of the commercial semi-HEPA filter medium. Therefore, it can assumed that there was a tradeoff between 
the pressure drop and NF-based filter medium thickness. The specific surface area, thickness, and fiber diameter 
of a filter medium is an important factor of its filtration performance, dust-holding capacity, and durability16,31,32. 
To verify this, the specific surface area of all filter media was measured by the Brunauer–Emmett–Teller (BET) 
method. Table 2 shows the measured specific surface area, average fiber diameter, thickness, pressure drop, and 
PM2.5-removal efficiency of a commercial semi-HEPA filter and three different types of NF-based filter media 
(PVA, PAN, and PVDF). The specific surface area of NF-based filter medium was at least seven times larger 
than that of the microfiber-based semi-HEPA filter. This implies that the PAN-NF filter medium had higher 
dust-holding capacity than the commercial semi-HEPA filter medium. In addition, scanning electron microscopy 
(SEM) images of all of the fiber-based filter media are shown in Fig. S3 for comparison.

The figure of merit of the filtration performance of a fibrous air filter medium is measured by the quality factor 
(QF):

= − ∆P pQF ln / , (1)

where P is the ratio of the penetration rate of particles (or particulate pollutants), and ∆p is the pressure drop 
across the filter medium27,33. Here, P is equal to 1-E, where E is the total filtration efficiency of the filter media, 
while a higher QF indicates better performance of the filter medium. Figure 3(a) shows a comparison of the QF 
values of three kinds of NF-based filter media (PVA, PVDF, and PAN) and three kinds of commercial filter media 
(cabin filter, semi-HEPA filter, and dust mask). The calculated QF of the PAN-NF filter medium (0.017285) is 
higher than the calculated values for the other NF-based filter media (0.00704 for PVA; 0.0124 for PVDF). Based 
on the molecular structural analysis and DFT calculations for the NF-based filter media, it can be predicted that 
the PAN has a more close-packed structure than PVA or PVDF (Fig. 1(f)). As shown in Fig. 1(c) and Table 1, 
PAN is also expected to have higher QF because of its twisted structure and steady-state DPM values from the 
DFT calculations. The QF of the PAN-NF filter medium is also slightly higher than that of the semi-HEPA filter 
medium (QF = 0.017233).

To demonstrate the practical use of NF-based filter media, we constructed a closed chamber with a volume 
of 360 L (Fig. 3(b)) and a PM-removal device (for PM2.5) that employed an electro-spun NF-based filter medium 
with a small direct current (DC) fan (CT-8015H12BF, COOLERTEC, China), as shown in the inset of Fig. 3(b). 
Before beginning the PM2.5-removal test, PM2.5 (with a high concentration of about 200 μg/m3) was supplied 
into the chamber without any PM-removal device, and the change in PM2.5 concentration in the chamber was 
observed over time. Figure 3(c) shows that the PM2.5 concentration gradually decreased for 8 h from 200 to 95 μg/
m3. Figure 3(d) shows the PM-capturing ability of the commercial semi-HEPA and PAN -NF filter media in 
the contaminated chamber with high PM2.5 concentrations (about 1,000 μg/m3) with a PM-removal device. For 
comparison, the same voltage was applied to the PM-removal device’s fan at DC 6 (for low speed), 9 (for medium 
speed), and 12 V (for high speed), respectively. As a result, the PAN-NF filter medium showed comparable per-
formance (air filtration rate) with the commercial semi-HEPA filter medium. It is important to point out that 
the comparable performances were also due to the inherent characteristics of the PAN-NF filter medium with 
a relatively low pressure drop (pressure drop of 162 Pa) compared to the commercial semi-HEPA filter medium 
(pressure drop of 189 Pa). This indicates that there was better air flow through the PAN-NF filter medium during 
the PM2.5-capture process.

Next, wettability tests were carried out for all filter media by measuring the contact angle (CA) of droplets of 
deionized (DI) water on their surface. Interestingly, the structure of the PVA-NF filter was destroyed after contact 
with DI water (Fig. 4(a)). By comparing the results of the DFT calculations and molecular structure analysis, 
it can be seen that the destruction of PVA NFs by DI water was inevitable owing to PVA’s high DPM (19.55 D, 
highest among the filter media examined in this study), H2O aggregation at the edge of the 2 nm PVA molecule, 

Filter 
medium

Mean fiber 
diameter 
[nm]

Specific 
surface 
area [m2/g]

Thickness 
[µm]

Pressure 
drop [Pa]

PM2.5-
removal 
efficiency [%]

Quality 
factor, QF 
[Pa−1]

PVA ~210 25.4 52 175 70.81 0.007040

PVDF ~590 8.5 43 145 83.01 0.012400

PAN ~500 10.1 40 162 93.02 0.017285

Semi-HEPA ~15,000 1.1 650 189 96.15 0.017233

Table 2. Measured average fiber diameter, specific surface area, thickness, pressure drop, PM2.5-removal 
efficiency, and quality factor (QF) of a commercial semi-HEPA filter and three different types (PVA, PVDF, and 
PAN) of NF-based filters.

https://doi.org/10.1038/s41598-019-43127-4


5Scientific RepoRts |          (2019) 9:7015  | https://doi.org/10.1038/s41598-019-43127-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

Figure 3. (a) Calculation results of quality factor (QF) for all air filters. (b) Photo of PM-removal test chamber 
and (inset) filtration device. (c) Change in PM2.5 concentration in a closed chamber without a PM-removal 
device. (d) Comparison of the PM2.5-removal performance of a PAN-NF-based filter and a semi-HEPA filter.

Figure 4. (a) Dissolution of PAN NFs by DI water. (b) Contact angle of DI water on the surface of semi-HEPA 
filter medium, PVDF-NF medium, and PAN-NF filter medium. (c) Behavior of DI water droplet on the surface 
of semi-HEPA filter medium, PVDF-NF filter medium, and PAN-NF filter medium.
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and O–H bonding from PVA, and interaction with H2O interaction due to high DPM. Moreover, PVA is a 
water-soluble synthetic polymer34. Figure 4(b) shows the CA of DI water on the surface of different filter media. 
The PAN-NF filter medium showed the lowest CA (11°) while the semi-HEPA and PVDF-NF filters showed 
CAs of 124° and 133°, respectively. It can thus be concluded that the PAN-NF filter medium had a hydrophilic 
surface. Figure 4(c) shows the behavior of the DI water droplets on the all of the filter media surfaces. The water 
droplets did not wet the surfaces of the semi-HEPA and PVDF-NF filters and evaporated into the atmosphere 
over time without absorption. On the contrary, the water droplet on the surface of the PAN-NF filter with hydro-
philic characteristics was absorbed in a very short time. Again, based on the DFT calculations for DPM and the 
molecular structure analysis of PAN, the hydrophilic property of PAN can be explained by the steady value DPM 
with increasing molecular weight (see Table 1) and the uniform distribution of H2O in its structure (see Fig. 1(f)).

Further experiments were performed on the time-dependent pressure drop in the wet state across the com-
mercial semi-HEPA, PAN-NF, and PVDF-NF filter media. The three filter media were stored at high-humidity 
(85–90% relative humidity, RH) and 30 °C for 48 h prior to the PM2.5-removal test to determine the effect of mois-
ture on the air-filter media. As shown in Fig. 5(a), the pressure drop during the initial stage across the NF-based 
filter media in the wet state was higher than the microfiber-based semi-HEPA filter medium because more mois-
ture was absorbed by NF-based filter media (Table 2). However, interestingly, the recovery in pressure drop across 
the PAN-NF filter medium was faster than the semi-HEPA and PVDF-NF filter media, which can be attrib-
uted to the hydrophilic surface and thinner thickness of the PAN-NF filter medium (in Table 2 and Fig. 4(b)). 
Lastly, in order to confirm the performance degradation of the filter media due to the adsorbed moisture, the 
PM2.5-removal performance in the chamber was compared with wet or dry filter media. For this, during the test, 
a constant voltage of DC 12 V was applied to the PM-removal device’s fan. As shown in the Fig. 5(b), the time 
required to remove PM in the chamber was noticeably extended by the absorption of moisture in all filter media. 
The performance (air filtration rate) degradation of all filter media is believed to be caused by an increase in the 
pressure drop across the filter media due to the adsorbed moisture. However, it is interesting to note that the 
performance degradation of the PAN-NF filter medium was smaller than that of the commercial semi-HEPA and 
PVDF-NF filter media. Eventually, the superior performance of the PAN-NF filter medium in dry and wet state 
was the result of its hydrophilic surface and the relatively low thickness.

Conclusions
In summary, we demonstrated high performance of electro-spun NF-based air filter media that can effec-
tively capture PM even in high-moisture environments. Among the filter media examined, the PAN NF filter 
medium showed relatively fast performance recovery under high-moisture conditions, whereas the commercial 
semi-HEPA filter medium showed poor recovery. The better performance of the PAN-NF filter medium origi-
nated from its structural and chemical properties and its relatively low thickness and hydrophilic surface. To reca-
pitulate, our findings would be a strong foundation for the research and development of other NF-based devices 
for applications such as liquid filtration, cosmetics, drug delivery, medical textile, moisture sensing, energy stor-
age, and air purification.

Methods
Preparation of polymer NF-based filter media. Polymer solutions, including polyvinylidene fluoride 
(PVDF; Arkema Co., France), polyvinyl alcohol (PVA; MW: 85,000–124,000, Aldrich, USA) and polyacrylonitrile 
(PAN: MW: 150,000, Aldrich, USA), were prepared by a sol–gel process. To fabricate the PVDF-NF filter medium, 
a 14 wt% PVDF solution was prepared in acetone–dimethylacetamide (acetone/dimethylacetamide ratio of 7:3 
by vol/vol) and then placed in an oven at 30 °C for 12 h. PVDF NFs were deposited on the substrate by electros-
pinning with the PVDF solution at 50 μL/min, room temperature (25 °C), and ~29% humidity. The voltage and 
distance between the needles and the collector were approximately 13.5 kV and 15.5 cm, respectively. To fabricate 
the PVA-NF filter medium, a 7 wt% PVA solution was prepared in the oven at 95 °C for 12 h, after which the PVA 
NFs were deposited on the substrate by electrospinning the PVA solution at (0.5 mL/h) under the same conditions 

Figure 5. (a) Changes in pressure drop cross semi-HEPA filter medium, PVDF-NF filter medium, and PAN-NF 
filter medium as a result of water absorption. (b) PM2.5-removal performance of the semi-HEPA, PVDF-NF, and 
PAN-NF filter media under dry and wet conditions.

https://doi.org/10.1038/s41598-019-43127-4


7Scientific RepoRts |          (2019) 9:7015  | https://doi.org/10.1038/s41598-019-43127-4

www.nature.com/scientificreportswww.nature.com/scientificreports/

(room temperature and ~30% humidity). Here, deionized water was used as a solvent for the PVA solution. 
Finally, a 10 wt% PAN solution was dissolved in N,N-dimethylmethanamide at 60 °C for 12 h, and the PAN NF 
filter medium was prepared by electrospinning the PAN solution at 1 mL/h onto the substrate under the same 
spinning conditions (room temperature and ~30% humidity).

Characterization. Field-emission scanning electron microscope (FE-SEM; Sirion FEI, USA) images were 
obtained at an accelerating voltage of 10 kV. Fourier transform infrared (FTIR) spectroscopy was conducted 
with an FTIR spectrometer (Alpha-P, Bruker Optics, Germany) from 400 to 4,000 cm−1. Contac angles (CAs) 
were measured on the surface of the filter media using a CA analyzer (Phoenix 300, Surface Electro Optics, 
Korea) by releasing 4.0 µL droplets of deionized (DI) water onto the surface. The behavior of the DI water droplet 
on the surface of each filter medium was recorded by a digital microscope imaging system (Dino-Lite Premier 
AD7013MZT, AnMo Electronics Corp., Taiwan) with a white light-emitting diode as the light source. The thick-
ness of each filter medium was measured with a pair of Vernier calipers (CD-15CPS, Mitutoyo, Japan). To obtain 
the exact thickness, ten filter media were layered to measure the total thickness, and then the average thickness of 
one filter medium was calculated. The specific surface area of all filter media was measured by the BET method. 
For the BET measurement, an adsorption/desorption experiment with nitrogen (N2) gas was performed.

Testing the performance of the air-filter media. The PM2.5-removal efficiency of the air filter media 
was calculated by comparing the PM2.5 concentration before and after filtration. The smoke generated by incense 
burning was used as a PM2.5 source. The size of smoke particles was measured with an optical particle sizer (OPS 
3330, TSI Inc., USA). The PM2.5 concentration before and after filtration was monitored by laser particle sensors 
(PM2007, Wuhan Cubic Optoelectronic Co., Ltd., China), while the pressure drop in the filter medium was meas-
ured by a differential pressure meter (Testo 510, Testo Inc., Germany). The filtration efficiency and the pressure 
drop of the filter media are measured using a vacuum pump with a constant flow rate (or pumping speed) of 32 L/
min. To evaluate the performance of the PM-removal device, we monitored the change in PM2.5 concentration in 
an airtight chamber while operating a fan. A DC voltage of 6–12 V was applied to the fan by a DC power supply 
(GPS-2303, Good Will Instrument Co., Ltd., Taiwan), and the change in the PM2.5 concentration was measured 
by an air-quality monitor (BR-SMART 126, BRAMC, China).
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