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Identification of transcriptome-
wide, nut weight-associated SNPs 
in Castanea crenata
Min-Jeong Kang1, Ah-Young Shin2, Younhee Shin   3,4, Sang-A Lee1, Hyo-Ryeon Lee1, 
Tae-Dong Kim1, Mina Choi5, Namjin Koo6, Yong-Min Kim   6, Dongsoo Kyeong   3,7, 
Sathiyamoorthy Subramaniyam3 & Eung-Jun Park1

Nut weight is one of the most important traits that can affect a chestnut grower’s returns. Due to the 
long juvenile phase of chestnut trees, the selection of desired characteristics at early developmental 
stages represents a major challenge for chestnut breeding. In this study, we identified single nucleotide 
polymorphisms (SNPs) in transcriptomic regions, which were significantly associated with nut weight 
in chestnuts (Castanea crenata), using a genome-wide association study (GWAS). RNA-sequencing 
(RNA-seq) data were generated from large and small nut-bearing trees, using an Illumina HiSeq. 2000 
system, and 3,271,142 SNPs were identified. A total of 21 putative SNPs were significantly associated 
with chestnut weight (false discovery rate [FDR] < 10−5), based on further analyses. We also applied five 
machine learning (ML) algorithms, support vector machine (SVM), C5.0, k-nearest neighbour (k-NN), 
partial least squares (PLS), and random forest (RF), using the 21 SNPs to predict the nut weights of a 
second population. The average accuracy of the ML algorithms for the prediction of chestnut weights 
was greater than 68%. Taken together, we suggest that these SNPs have the potential to be used during 
marker-assisted selection to facilitate the breeding of large chestnut-bearing varieties.

The chestnut is widely cultivated as a food crop in Asian and European countries, due to its high nutrient contents 
combined with its low fat content1,2. Moreover, it is the only nut known to contain vitamin C, with 40 mg of vita-
min C per 100 g of raw product, which represents 65% of the United States Department of Agriculture (USDA) 
recommended daily uptake of vitamin C (USDA nutrient database, http://ndb.nal.usda.gov). Moreover, Castanea 
trees contribute to the maintenance of the ecosystem and soil fertility3,4.

Since 1997, global chestnut production has increased sharply, reaching its maximum level (approximately 2 
million tons) in 20095. According to a report published by the Food and Agriculture Organization (FAO) in the 
United States, chestnut production has steadily increased in Asia through 2014, and chestnuts grown in Asia 
accounted for 89.6% (1.8 million tons) of the world chestnut production that year5. The Republic of Korea is the 
second largest chestnut producer5. According to the Korean export index, chestnuts represent the largest exported 
forest crop for Korea, and chestnut exports increased by approximately 23% in 2017 compared with 20166. In 
Korea, the cultivar Arima (C. crenata) and its hybrids, including C. crenata × C. mollissima, are widely cultivated 
in the fields7. Moreover, new Korean indigenous cultivars, such as Mipung8 and Jahong9, have been developed to 
improve production under various environmental conditions. The nut weight represents one of the most impor-
tant traits that can determine the economic success of a grower1.

Conventional tree breeding (CTB) involves the planned interbreeding between closely related individuals 
to produce new cultivars that express desirable traits, such as enhanced productivity or being easier to har-
vest. Using CTB, the development of new cultivars that express beneficial traits can take a long time, making it 
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difficult to meet the grower’s demands. Moreover, the long life cycle of trees, including chestnut trees, becomes 
a barrier to CTB compared with the breeding of annual crops. Recently, molecular markers have been iden-
tified and used for marker-assisted selection10. Representative molecular markers include restriction fragment 
length polymorphisms, randomly amplified polymorphic DNA, amplified fragment length polymorphisms, 
simple sequence repeats, inter-simple sequence repeats, and single nucleotide polymorphisms (SNPs)11,12. In 
general, most commercially desirable traits are quantitative traits associated with large numbers of genes. The 
rapid growth in next-generation sequencing technologies (NGS), combined with various statistical methods, has 
facilitated the use of genome-wide association studies (GWASs)13. In particular, genome-based breeding reduces 
the time required for various breeding schemes14,15. Furthermore, a transcriptome-based GWAS, which is a type 
of GWAS, uses transcriptome sequencing data to identify variants within the coding regions of the genome16. 
Transcriptome-based GWAS has several advantages compared with the traditional GWAS. First, transcriptome 
analysis can enhance the power of verifying associated genes by overcoming the potential allelic heterogene-
ity in SNP-based GWASs17, when a number of alleles act through one gene to influence a trait18. Second, the 
transcriptome-based method can reduce the interference from population heterogeneity by various arrange-
ments of tagging different SNPs to the same causal variants19. Third, transcriptome-based analysis also prac-
tically reduces the burden of multiple testing for traditional GWASs. Furthermore, the gene is the functional 
unit in the genome with high consistency across populations, which is the major target used by most of the 
subsequent bioinformatics analyses16. Machine learning (ML) is the study of algorithms and statistical models 
that facilitate software applications to increase the accuracy of outcome predictions without explicit instructions. 
To predict phenotypes, large-scale genotypic information across the whole genome has been subjected to ML 
approaches. ML is the most effective method for predicting phenotypes based on genotypes and has been widely 
applied in various population studies20,21. For example, an ML model was constructed to predict rust resistance 
in wheat from a genomic selection22, and have also been applied to other genotype classifications23. Therefore, 
transcriptome-based GWAS combined with ML analysis might be one of the effective and operational methods to 
predict the phenotype, which is the result of interactions between the organism’s complement of genes.

Our study aimed to predict the transcriptome-wide SNPs that are closely associated with nut weights. Five ML 
algorithms, including random forest (RF), support vector machines (SVM), k-nearest neighbour (k-NN), partial 
least squares (PLS), and C5.024, were used to predict nut weights with 21 SNPs. Through our association study 
and the ML approaches, we identified 21 SNPs associated with nut weights that were able to clearly discriminate 
between large and small nut-bearing populations. Hence, we suggest that the ML approach is an effective method 
for the prediction of nut weights. This study represents the first attempt to identify highly significant SNPs asso-
ciated with nut weights in Korean chestnut trees.

Results
RNA sequencing and variant calling.  To obtain variations in transcribed sequences, 42 chestnut acces-
sions were selected for the training set, according to their nut weights (Supplementary Table S1). The training set 
was divided into large (>25 g/nut) and small (<15 g/nut) nut-bearing groups (Supplementary Table S1), whereas 
the nut weights in the validation sets (n = 46) ranged from 7.5 g to 25.0 g (Supplementary Table S2). Total RNAs 
were extracted and sequenced using an HiSeq. 2000 platform (Illumina, San Diego, CA, USA). An average of 
52.3 million raw reads were generated from the training set. After quality control and trimming processes were 
applied, an average of 51.1 million high-quality, clean reads were obtained (Fig. 1, Supplementary Table S3). 
Clean reads were subsequently mapped to the Chinese chestnut (Castanea mollissima) genome, and the resulting 
mapping rate was 84.4%, on average (Supplementary Table S3).

High-quality, clean reads were further processed according to the systematic variant calling protocol (Fig. 1). 
A total of 3,271,142 SNPs were generated, using the gene analysis tool kit (GATK) pipeline, and annotated, using 
SnpEff v.4.2. Of these, 397,059 SNPs remained after the data were filtered using cut-off values, including genotype 
rate ≥90%, minor allele frequency ≥5%, and Hardy-Weinberg equilibrium value < 0.001. These high-quality 
SNPs were then separated by genomic position (Supplementary Table S4).

Genetic diversity and population structure analysis.  Genetic diversity within the training set was 
assessed using the 397,059 filtered SNPs. The principle component analysis (PCA) indicated that the 42 individual 
chestnut trees could be classified into three clusters, large (n = 12), small (n = 8), and marginal (n = 22), using the 
first and second principal components, PC1 and PC2, respectively (Fig. 2a). Phylogenetic tree analysis, using the 
neighbour-joining method, also returned large, small, and partially coexistent groups (Fig. 2b). Several trees (S4, 
S18, L3, and L11) were included in the marginal subset, as shown by the PCA analysis. To estimate the population 
structure, a STRUCTURE analysis, based on the Bayesian model-based clustering method, was performed. The 
optimal number of groups was three, based on the maximum likelihood and ΔK value (K = 3) (Fig. 2c). In this 
model, the large and small populations consisted of two and three distinct sub-populations, respectively, suggest-
ing that the small population experienced more genetic drift than the large population.

SNPs associated with nut weight phenotypes.  A GWAS was performed to explore the association 
between nut weights and SNPs (Fig. 3). Categorical and regression association studies (false discovery rate 
[FDR] < 0.05) respectively identified 365 and 341 SNPs. Among them, 192 SNPs were identified in both associa-
tion studies (Supplementary Fig. 1). Consequently, a total of 514 SNPs were selected and mapped to the genomic 
contigs of Chinese chestnut (Fig. 3a). Finally, we identified 21 SNPs showing strong genetic correlations with 
nut weight (FDR < 10−5, Table 1), by the quantitative regression. PCA analyses using the 21 SNPs showed clear 
groupings between small and large populations (Fig. 3b). These 21 SNPs were further used for the ML approach 
and validation.
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Evaluation of nut weight predictions in a training population.  To investigate the predictive potential 
of 21 putative SNP markers for nut weight, we first divided the entire dataset (n = 42) into a training dataset (29 
cases) and a test dataset (13 cases) and then evaluated the model using five ML algorithms, including SVM, PLS, 
RF, k-NN and C5.0. The resulting prediction accuracy was 98.7%, on average (Fig. 4a, Supplementary Table S5), 
indicating that the ML-based prediction models performed well for the training population.

A new chestnut population (n = 46) was assessed to validate the performance of the ML models during the 
prediction of nut weights. The average prediction accuracy of the five ML models was 74.9% for the valida-
tion population (Fig. 4b, Supplementary Table S5). Among the five ML algorithms, both k-NN and RF outper-
formed the other algorithms for both the training and validation populations. The values of each area under the 
curve (AUC) from the quantitative regression mode in the association study were calculated for the 21 SNPs 
(FDR < 10−5). Overall, the results demonstrated that the ML-based predictive models performed well in the 
training dataset (Fig. 4a). In the validation dataset, the ML algorithms performed with greater than 75% accuracy, 
except for the SVM model (Fig. 4b). The RF algorithm outperformed the other algorithms for both the training 
and validation datasets. Similarly, the use of different sets (A to H) of SNPs as predictive variables was evaluated 
in the training population (Supplementary Table S6). These results indicated that the RF algorithm provided the 
best accuracy (as measured by the mean receiver operating characteristic [ROC]) for all SNP sets compared with 
the other algorithms.

Genotyping and validation of the SNPs among the validation population.  Even though the 21 
SNPs (FDR < 10−5) were validated by the ML application, we re-evaluated these 21 SNPs and then performed 

Figure 1.  Overview of the systematic SNP analysis. A total of 21 SNPs (FDR < 10−5) related to chestnut weight 
were obtained and validated, as shown above. Individual cut-off values and bioinformatic programs are denoted 
parallel to each step. Illumina RNA sequencing was performed using 42 chestnut trees, categorised as either 
large or small nut-bearing populations. For the machine learning algorithms, 70% of the 42 chestnut tree 
genotypes were randomly used for training and the remaining 30% were used for testing. For further validation, 
using Sanger sequencing, another 46 chestnut tree genotypes were used as the validation set.
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genotyping PCR using a different population (n = 46, validation dataset). To evaluate the 21 SNPs in the valida-
tion dataset, the flanking sequences of these SNPs were genotyped using Sanger sequencing and specific primers 
(Supplementary Tables S7 and S8). Remarkably, SNP 13428 caused a missense mutation by replacing a guanine 
nucleotide (G) with a thymine (T), resulting in a shift from a small nut-bearing population to a large nut-bearing 
population (Table 1, Supplementary Table S8). This SNP is located in the well-studied pentatricopeptide repeat 
(PPR) gene, which plays an important role in determining the nut weights of other plants. The rate of the pol-
ymorphic status of this locus across 21 representative individuals primarily depended on the frequency of the 
minor allele in the large nut-bearing population (Supplementary Table S8). Moreover, the minor alleles of five 
SNPs (57173, 57473, 66111, 66232, and 66350), located in scaffold 01019, which encodes an E3 ubiquitin ligase 
component protein, were frequently detected in large nut-bearing groups (Table 1, Supplementary Table S8). In 
addition, the minor alleles of three SNPs (2380, 85468, and 92916) in the Anaphase-promoting complex (APC) 
gene were primarily detected in the large nut-bearing groups (Table 1, Supplementary Table S8). These results 
suggest that the sequences involved in seed development are diverse among the large nut-bearing groups, and that 
attempts to improve the quality of the nuts likely resulted in the artificial selection of these SNPs.

Similarly, regression modes were constructed for both the training and validation populations (n = 88), using 
the same ML algorithms to predict nut weights according to genotypes. The overall performance yielded an aver-
age accuracy of 68% (R2 value) (Fig. 5). For this analysis, the PLS algorithm outperformed the other algorithms. 
Thus, we obtained a mathematical structure for calculating nut weight according to genotype, using the regression 
mode. In addition, we evaluated the 21 SNPs identified as being important for prediction accuracy and com-
pared the predicted nut weights with the actual nut weights in the validation population (n = 46) (Supplementary 
Table S8). The predicted probability of a given nut weight was highly correlated with the actual nut weight in the 
46 validation samples. Therefore, our data suggested that the transcriptome-based GWAS enabled the identifica-
tion of highly related SNPs associated with nut weights and that ML model-based prediction might represent a 
useful approach for discriminating nut weights from chestnut datasets.

Figure 2.  Genetic structures of 42 individual chestnut trees. (a) Plots of the first principle components, using 
397,059 filtered SNPs. Individual accessions are shown as coloured dots that represent either large (red) or 
small (blue) nut-bearing populations. The percentage of variance is described in the axis. (b) Neighbour-joining 
phylogenetic tree of 42 chestnut accessions, based on SNPs. The subclades represent either a large (red) or small 
(blue) nut-bearing population, and the scale bar unit (0.1) is displayed below the tree. (c) Population structure 
histogram inferred using the Bayesian model-based STRUCTURE clustering method. The colour of each bar 
represents a specific cluster of large and small nut-bearing populations at an optimal value of K = 3.
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Discussion
Many breeders have evaluated genetic and environmental variations to improve breeding efficiency25. Desirable 
trait-based selective breeding is also an important process. Phenotypic and environmental factors, including 
plant growth and disease resistance, can be assessed at an early stage, such as during seed germination. However, 
traits related to yield are highly dependent on the plant life cycle. Perennial trees tend to remain in a juvenile 
phase for longer than other plants, requiring space and effort to maintain the tree until it enters the reproductive 
phase25. Therefore, improving the evaluation accuracy is more important than increasing the number of trees26. 
A transcriptome-based SNP approach can efficiently address these problems. Additionally, transcriptome-based 
GWAS represents a cost-effective and time-saving method for developing large-scale markers16, especially com-
pared with the general GWAS or other conventional marker identification assays. Recently, transcriptome-based 
GWAS has been successfully applied to human diseases16,17.

The transcriptome-based SNP approach can be applied to non-model species without a reference genome27. 
Although the whole genome sequencing results for Chinese chestnut (C. mollissima) have recently been released, 
it is difficult to apply these data to Korean naturalised chestnuts, due to sequence variations within species28,29. 
Thus, we first conducted the transcriptome sequencing analyses on chestnut trees located in various areas of 
South Korea and reported the transcriptome-wide polymorphisms found in the coding regions associated with 
nut weight. An average of 84.4% of the coding genes found in C. crenata could be mapped onto C. mollisima, an 
average of 83.1% of which was uniquely mapped (Supplementary Table S3). Despite sequencing for sufficient 
matches between the identified SNPs and known chestnut sequences, the establishment of a standard reference 
genome for the Korean chestnut is necessary for accuracy and for comprehensive sequencing analyses. The estab-
lishment of a standard genome would facilitate the study of genetic variations among chestnuts, through linkage 
mapping between Korea, China and Japan chestnuts29,30.

Our study is the first study to utilise SNP identification to determine the weights of the chestnuts grown by 
Korean chestnut trees. We systemically predicted 21 SNPs among 14 genes, which correlated strongly with nut 
weights in Korean chestnuts (Table 1). In total, 11 nonsynonymous variations were identified and 9 of 11 non-
synonymous variations were annotated in eight genes identified their function. These nine nonsynonymous var-
iations might affect gene functions and led phenotypic differences of chestnut. Among the identified genes were 
genes encoding PPR proteins, a large family of proteins that are extensively involved in various plant physiologi-
cal process, especially seed development31. The loss-of-function EMP8 mutant showed severely arrested embry-
onic and endosperm development, and the EMP9 mutation delayed embryogenesis and plant growth through 
mitochondrial RNA editing in maize. Thus, PPR, EMP8 and EMP9 are involved in the development of seeds in 
maize32,33. Similarly, the DYW-type PPR protein regulates RNA editing and is essential for early seed development 
in Arabidopsis thaliana34. Small kernel 1 encodes a PPR protein that is required for seed development in maize 
and rice35. In addition, the other highly active genes listed in Table 1 are E3-ubiquitin-protein ligases, which have 
been widely studied for their roles in the regulation of abscisic acid (ABA) signalling, seed germination, and 
growth processes in plants36. For example, plants with mutations in E3 ubiquitin-protein ligases associated with 

Figure 3.  Clustering of SNPs associated with nut weight phenotypes. (a) GWAS-based Manhattan plots to 
illustrate the significant FDR levels for the SNPs associated with nut weight. The x-axis represents the relative 
density of SNPs mapped to the genome contig. The y-axis represents the -log 10 FDR level of the SNPs. SNPs at 
different FDR are represented by different colours: green (0.05), yellow (0.01), orange (0.005), red (0.001) and 
violet (0.00001). (b) Principal component analysis (PCA) showing 21 SNPs with FDR levels < 10−5 in the large 
(red) and small (blue) nut-bearing populations. The percentage of variance is described in the axis.
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ABA signalling have been adapted to various environmental factors to regulate seed size37–39. In the case of APC 
gene, two additional synonymous variations were also identified. APC can also affect the fruit size by regulating 
cell cycle regulation in large fruits. Similarly, Arabidopsis ATP-binding cassette (ABC) transporters have been 
reported to regulate seed size through lipid accumulation during development40. In addition, DNA replication 
complex GINS and early flowering 4 (ELF4) genes are also involved in cell cycle regulation and flowering, respec-
tively. These genes also may affect fruit size in large fruits. With this evidence, we suggest that the 21 SNPs iden-
tified in this study across 14 genes are highly likely to be associated with nut weight. Thus, functional biological 
studies of these 14 genes will provide a better understanding of the mechanisms of action underlying nut weight.

Contig ID (Scaffold No: SNP 
Location)

Minor 
allele

Major 
allele Variant Type FDR Gene name Function

scaffold01190:13428 T G Nonsynonymous 1.46E-08 Pentatricopeptide repeat-containing protein Seed development31–35

scaffold01019:66350 G A Nonsynonymous 1.70E-07
E3 ubiquitin ligase ABA Signaling36–39

scaffold01019:66232 A G Nonsynonymous 1.70E-07

scaffold00551:8613 A G Nonsynonymous 6.32E-06 ABC1 protein Seed development40

scaffold00859:85468 T C Nonsynonymous 8.62E-08 Anaphase-promoting complex subunit 1 Cell cycle control55

scaffold00485:2380 T C Nonsynonymous 8.62E-08 1-aminocyclopropane-1-carboxylate oxidase Fiber cell elongation56

scaffold00406:56142 T C Nonsynonymous 8.98E-06 Zinc metalloprotease Proteolysis57

scaffold00485:53410 C T Nonsynonymous 1.16E-06 Omega-3 fatty acid desaturase Abiotic stress58,59

scaffold01190:53971 A G Nonsynonymous 3.90E-07 SER/THR-protein kinase-like protein Seed oil accumulation60

scaffold00485:18530 G A Synonymous 8.62E-08 Anaphase-promoting complex subunit 1 Cell cycle control55

scaffold00491:55296 A T Synonymous 6.99E-06 LOB domain-containing protein Lateral organ formation61,62

scaffold00859:92916 T A Synonymous 7.21E-06 Anaphase-promoting complex subunit 1 Cell cycle control55

scaffold01019:66111 G A Synonymous 1.70E-07

E3 ubiquitin ligase ABA Signaling36–39scaffold01019:57473 A G Synonymous 1.70E-07

scaffold01019:57173 C T Synonymous 1.70E-07

scaffold01190:53970 A G Synonymous 3.90E-07 SER/THR-protein kinase-like protein Seed oil accumulation60

scaffold00485:49474 C T 3’ UTR 1.16E-06 N-(5’-phosphoribosyl) anthranilate isomerase 1 Leaf development63

scaffold00551:98229 T C Downstream 3.74E-07 DNA replication complex GINS protein DNA replication64

scaffold00551:85919 G A Downstream 3.74E-07 EARLY FLOWERING 4 Flowering65

scaffold00406:46909 T C Nonsynonymous 8.98E-06 Unknown N.A.

scaffold00406:46801 C G Nonsynonymous 8.98E-06 Unknown N.A.

Table 1.  List of 21 SNPs with strong genetic correlations with chestnut weight (FDR < 10−5).

Figure 4.  Machine learning algorithm for nut weight prediction accuracy. Receiver operating characteristic 
(ROC) curves for 21 SNPs (FDR < 10-5) using five machine learning algorithms: support vector machines 
(SVM), k-nearest neighbour (k-NN), random forest (RF), C5.0 and partial least squares (PLS). Each area under 
the curve (AUC) shows the average of 10 cross validations for (a) the training dataset (n = 42) and (b) the 
validation dataset (n = 46).
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To validate these markers, we evaluated 21 SNPs related to nut weights using five ML algorithms. Using these 
SNPs as markers during supervised ML applications, most of the prediction models (4 out of 5) predicted nut 
weights with high accuracy, both during training and during external validation (Fig. 4 and Supplementary 
Table S6). These ML algorithms were capable of determining 68% of the nut weights according to genotype, in 
both the training and validation datasets (Fig. 5). However, SNP identification using RNA-seq has some limi-
tations. SNPs associated with other genomic structural elements were overlooked in favour of those associated 
with nut weight. Moreover, the samples used in this study were randomly collected, rather than through the use 
of a controlled breeding scheme; therefore, obtaining an exact heterogeneous SNP pattern was not possible. Our 
Sanger sequencing results demonstrated the accuracy of SNP validation. For this experiment, 46 chestnut trees 
were randomly selected, and the 21 SNPs were examined in this population using Sanger sequencing. Of the 21 
SNPs, 15 SNPs were found to be highly reliable; however, 6 SNPs showed low genotype efficiency among the 
46 chestnut trees in the validation dataset (Supplementary Table S8). This result indicates that further external 
testing groups are necessary to improve the accuracy of SNP validation. An additional filtering step to identify 
putative SNPs at each locus may be required.

Overall, the results suggest that these SNPs represent a valuable resource for chestnut breeding, especially for 
nut weight traits. Our research will shorten the time required for chestnut breeding and can be used to improve 
nut weights, as desired by growers.

Materials and Methods
Plant materials.  Samples were collected from Korean chestnut trees in the experimental forest of 
Hwaseong-si, Gyeonggi-do, Republic of Korea. The nuts from each tree were collected at stage II, 14 days after 
pollination, and the samples were frozen in liquid nitrogen and stored at −80 °C following RNA extraction.

Illumina RNA library preparation and sequencing.  To obtain high-throughput transcriptome data 
from Korean chestnuts, we implemented Illumina-based NGS sequencing. Total RNA was extracted from indi-
vidual samples, using TRIzol reagent (Invitrogen), according to the manufacture’s protocol. Total RNA was then 
quantified using a Nano drop spectrophotometer (Thermo Scientific), and the quality was assessed using an RNA 
6000 Nano assay kit (Agilent) and a Bioanalyzer 2100 (Agilent). NGS sequencing libraries were generated from 
1 µg of total RNA, using the TruSeq RNA Sample Prep kit (Illumina) according to the manufacture’s protocol. In 
brief, the poly-A containing RNA molecules were purified using a poly-T oligo attached to magnetic beads. After 
purification, the total poly-A RNA was fragmented into small pieces, using divalent cations under elevated tem-
peratures. The cleaved mRNA fragments were reverse transcribed into first strand cDNA, using random primers. 
Short fragments were purified using a QiaQuick PCR extraction kit and resolved with elution buffer for the 
end reparation and the addition of poly-A. Subsequently, the short fragments were connected with sequencing 
adapters. Each library was separated by an adjoining and distinct molecular identifier tag. The resulting cDNA 
libraries were then paired-end sequenced (2 × 101 bp) for use as individual samples with the HiSeq 2000 system 
(Illumina).

Variant calling from RNA-seq data.  The complete workflow of this study is delineated in Fig. 1. The 
sequence reads were checked for contaminated adapters and low-quality reads, using Trimmomatic v.0.3641, 
and mapped to the reference genome of Chinese chestnut (Castanea mollissima, version 1.1) from Hardwood 
Genomics Project (https://hardwoodgenomics.org)42, using bowtie2 v.2.2.343. To perform filtering on read 
lengths, reads with average quality scores that were too high (N nucleotide ratio higher than 10%) or too low (less 
than Q20) were removed. The scaffold genome sequence is publicly available in the NCBI GenBank repository 
(accession number: KN214215-KN234744, and BioProject accession: PRJNA46687 at http://www.ncbi.nlm.nih.
gov/genbank). To optimise the small insertion and deletion artefacts, the reads were re-mapped to the reference 

Figure 5.  Scatter plot showing the prediction accuracy of nut weights. Lines represent the regressions of the 
expected nut weights (n = 88). The coefficients of determination (R2) for the five ML algorithms (plots in 
multiple colours) were calculated as the proportion of variability between the regression graph and the observed 
nut weights. R2 values for each algorithm: SVM = 0.68, k-NN = 0.65, RF = 0.68, C5.0 = 0.68, and PLS = 0.70. SE 
represents the standard error of the nut weight estimate.
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with IndelRealigner, and the base-pair quality scores (QUAL) were calibrated using count covariates and the 
table recalibration functions in GATK v.3.544, as instructed in the best practices protocol. The variants for indi-
vidual samples were called by UnifiedGenotyper, using the variant call format (GVCF) and the filters normalised 
quality score (NQS) ≥ 2 and mapping quality (MQ) ≥ 40 to obtain high-quality SNPs. Finally, the SNPs were 
annotated using SnpEff v.4.245, and the missing genotypes were imputed by Beagle v.4.146 based on the linkage 
dis-equilibrium (LD) score.

Dataset for the training population.  In the training population, we used 42 specimens that were cate-
gorised into two groups (large and small) according to their nut weights (Supplementary Table S1). The training 
population was sequenced using the RNA-seq protocol. For the large group, the nut weights ranged from 25.5 g to 
39.4 g, whereas in the small group, the nut weights range from 4.8 g to 14.2 g (Supplementary Table S1). Further, 
the large group was treated as the experimental group and the small group was treated as the control group for all 
subsequent statistical analyses.

Validation population.  For further validation, 46 chestnut trees were used as the test population 
(Supplementary Table S2), and the SNPs were validated in this population using Sanger sequencing. The 21 sig-
nificant SNPs that were predicted from training population were amplified using specific primers (Supplementary 
Table S7). The primers were designed using primer 347 and contained 20 bases from the regions flanking the SNPs 
(Supplementary Table S7). The size of each amplified PCR product was approximately 290 bp. This dataset was 
used to evaluate the prediction accuracy of the ML models and to derive the formulas for estimating nut weight 
according to genotype.

The genotyping of the validation data.  Total genomic DNA was isolated from 46 cultivars of chestnuts 
using a DNeasy Plant Mini kit (Qiagen, Germany) and the cetyltrimethylammonium bromide (CTAB) method, 
with minor modifications. PCR amplification was performed in a 20 µL volume using Taq DNA polymerase 
(RBC bioscience, Taiwan). The genotyping PCRs for this experiment used individual SNP primers, listed in 
Supplementary Table S7. PCR conditions were as follows: 94 °C for 3 min; 40 cycles at 94 °C for 30 s, 55 °C for 30 s, 
and 72 °C for 30 s; and extension at 72 °C for 5 min (BIO-RAD T100, USA). The PCR products were sequenced by 
the Sanger method from forward or reverse primers. The sequences were aligned with their respective chromato-
grams using the BioEdit software v.7.2.548.

SNP selection and population stratification.  To understand the population structure in a given data-
set, the SNPs yielded from the variant calls were subjected to population stratification analysis using PLINK 
v.1.949 in the PCA mode. The SNPs calculated using this method were further filtered to reduce the false posi-
tive predictions using the following filters: genotyping rate ≥ 90%, mapping quality ≥ 40, minor allele frequency 
(MAF) > 5% and Hardly-Weinberg equilibrium (HWE) < 0.001. Furthermore, the sub-populations (K) of the 
given samples were estimated through the number of clusters (K), which was obtained using STRUCTURE 
v.2.3.450, without any prior population information. The ad-hoc static ΔK (rate of change in the log probability of 
data between successive K values) values were used to determine the uppermost hierarchical levels of the popula-
tion structures present in a given population51. The range of clusters (K) was pre-defined from one to seven. The 
analysis was performed with 20 replicated runs, using 100,000 iterations after a burn-in period of 50,000 runs. 
The output of the STRUCTURE analysis was visualised using CLUMPAK52.

Estimation of associations between genotype and phenotype.  A GWAS was conducted using two 
modes, categorical association (case vs. control) and quantitative linear regression. The associations between 
genotype and phenotype for the two modes were calculated using PLINK v.1.9 in the association mode (Fig. 1). 
The significant SNPs were selected by applying the cut-off of p < 0.01.

Machine learning prediction and evaluation.  Supervised ML was used to construct models to attain 
greater predictive power from the high-dimensional datasets. Here, we constructed models using significant SNPs 
(as features), which were selected from the transcriptome-based GWAS. The models were constructed from five 
learning models: SVM, k-NN, RF, PLS, and C5.021. The training population (n = 42) was divided into a training 
dataset and a validation dataset at a 7:3 ratio for the prediction models. The best model was selected automatically 
by the caret R package53.

To compare the prediction methods, we determined sensitivity, specificity, and accuracy, using the fol-
lowing equations: Sensitivity = [TP/(TP + FN)]; Specificity = [TN/(TN + FP)]; and Accuracy = [(TP + TN)/ 
(TP + FP + TN + FN)]; where TP was the number of true positives, TN was the number of true negatives, FP was 
the number of false positives, and FN was the number of false negatives. The performances of the prediction mod-
els were assessed using ROC curves, plotting the sensitivity as a function of (1-specificity) for different decision 
thresholds. Further, to quantitatively compare the ROC curves, we computed the AUC, and significant differences 
between two ROCs were assessed using a two-tailed Student’s t-test. These evaluation metrics were calculated as 
explained by Manavalan et al.54. To calculate the ROC and the AUC, we used the plotROC R package55.

Data Availability
RNA-seq data were deposited in the Sequence Read Archive database of the National Center for Biotechnology 
Information under accession number PRJNA497951.
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