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novel genes exhibiting DnA 
methylation alterations in Korean 
patients with chronic lymphocytic 
leukaemia: a methyl-cpG-binding 
domain sequencing study
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Chronic lymphocytic leukaemia (CLL) exhibits differences between Asians and Caucasians in terms 
of incidence rate, age at onset, immunophenotype, and genetic profile. We performed genome-
wide methylation profiling of CLL in an Asian cohort for the first time. Eight Korean patients without 
somatic immunoglobulin heavy chain gene hypermutations underwent methyl-cpG-binding domain 
sequencing (MBD-seq), as did five control subjects. Gene Ontology, pathway analysis, and network-
based prioritization of differentially methylated genes were also performed. More regions were 
hypomethylated (2,062 windows) than were hypermethylated (777 windows). Promoters contained 
the highest proportion of differentially methylated regions (0.08%), while distal intergenic and intron 
regions contained the largest number of differentially methylated regions. Protein-coding genes were 
the most abundant, followed by long noncoding and short noncoding genes. The most significantly 
over-represented signalling pathways in the differentially methylated gene list included immune/
cancer-related pathways and B-cell receptor signalling. Among the top 10 hub genes identified via 
network-based prioritization, four (UBC, GRB2, CREBBP, and GAB2) had no known relevance to cLL, 
while the other six (STAT3, PTPN6, SYK, STAT5B, XPO1, and ABL1) have previously been linked to cLL 
in Caucasians. As such, our analysis identified four novel candidate genes of potential significance to 
Asian patients with CLL.

Chronic lymphocytic leukaemia (CLL) is characterized by the co-expression of CD5 and CD23 in monomorphic 
small B-cells; it is the most common leukaemia among adults in Western countries, especially the elderly1. CLL 
among Asians differs from that among Caucasians in terms of the incidence rate, median age at onset, pheno-
type, and the genetic profile. The incidence rates per 100,000 person-years in Korea and Japan are 0.04 and 0.48, 
respectively, but the rate is 3.83 in Western countries2. The median age at initial CLL diagnosis is 61 and 70 years 
among Asians and Caucasians, respectively2. A single-institution study in South Korea found that 56% of patients 
had an atypical immunophenotype with high frequencies of FMC7 positivity and strong CD22 positivity3. A 
Chinese study showed that TP53 mutations are more common in Chinese patients with CLL than in Caucasian 
patients, whereas SF3B1 mutations are less common4. Furthermore, a Korean study found that the frequencies of 
mutations in ATM, TP53, KLHL6, BCOR, and CDKN2A tend to be higher in Koreans than in Caucasians, while 
those in SF3B1, NOTCH1, CHD2, and POT1 tend to be lower2.

DNA methylation directly impacts human genome function, and multiple studies have demonstrated the 
existence of aberrant epigenetic changes that play important roles in tumour initiation and progression in Western 
patients with CLL5–8. Recent advances in high-throughput techniques have enabled genome-wide methylation 
profiling in Caucasians with CLL. For example, an array study identified methylation in seven known or candidate 

1Department of Laboratory Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea. 
2Department of Internal Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea. 3Korean 
Bioinformation Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea. 
*email: swhwang@kribb.re.kr; lyoungk@hallym.or.kr

open

https://doi.org/10.1038/s41598-020-57919-6
mailto:swhwang@kribb.re.kr
mailto:lyoungk@hallym.or.kr


2Scientific RepoRtS |         (2020) 10:1085  | https://doi.org/10.1038/s41598-020-57919-6

www.nature.com/scientificreportswww.nature.com/scientificreports/

tumour suppressor genes (including VHL, ABI3, and IGSF4) as well as eight unmethylated genes involved in cell 
proliferation and tumour progression (including ADORA3 and PRF1) in Swedes with immunoglobulin heavy 
chain gene variable region (IGHV)-unmutated CLL9. Another study of the same cohort found 2,239 CpG sites 
that were differentially methylated in IGHV-mutated and unmutated patients; DNA methylation over time was 
relatively stable, implying that aberrant methylation is an early leukaemogenic event10. Another Spanish study 
of 139 patients that included in-depth interrogation using whole-genome bisulfite sequencing showed that 
IGHV-mutated and -unmutated CLL had differing DNA methylomes that represented epigenetic imprints from 
distinct normal B-cell subpopulations11. Additionally, an American cohort study using reduced-representation 
bisulfite sequencing showed that CLL cells consistently displayed higher intra-sample variability in DNA meth-
ylation patterns across the genome, implying that disordered methylation is akin to genetic instability, thereby 
enhancing the ability of cancer cells to follow superior evolutionary trajectories12.

Methyl-CpG binding domain (MBD) sequencing (MBD-seq), a next-generation sequencing technique 
for genome-wide methylation profiling, sequences the DNA captured by the MBD13. MBD-seq is an affinity 
enrichment-based method in which methyl-CpG binding proteins link to methylated CpGs via the MBD. This 
technique has several advantages; for example, since DNA methylation occurs primarily within CpG dinucleo-
tides (which represent approximately 1% of the genome), MBD-seq is efficient as it comprehensively interrogates 
only regions of relevance14. Furthermore, MBD-seq does not show restriction enzyme-dependent bias toward 
CpG-rich regions, resulting in greater genome-wide coverage (61%) than that using reduced-representation 
bisulfite sequencing (12%)15. Compared to array platforms, the genome-wide coverage of MBD-seq is also not 
restricted to the fixed array content. MBD-seq use has been increasing owing to the aforementioned reasons; 
however, only one MBD-seq-based study of CLL has been published to date16. That study showed that 40% and 
60% of hypermethylated and hypomethylated genes, respectively, were mapped to noncoding RNAs. It was also 
observed that the major repetitive elements (such as the short and long interspersed elements) have a high per-
centage of differentially methylated regions in IGHV-mutated subgroups compared to normal controls.

In contrast to Caucasians, from whom abundant data are available, the methylation profiles of CLL in Asians 
has never been reported. Hence, we aimed to elucidate the role of aberrant methylation in the pathogenesis 
of Asian CLL for the first time, and to investigate the differences in methylation patterns between Asian and 
Caucasian patients with CLL. We also sought to identify novel candidate genes with potentially high functional 
relevance in CLL using protein-protein and protein-DNA network-based approaches that link the differentially 
methylated genes (DMGs) to known CLL-related genes.

Results
Genome-wide distribution of differentially methylated regions. Our approach using MBD-seq 
enabled a comprehensive genome-wide interrogation of differentially methylated regions in CLL. Stringent cri-
teria (false discovery rate <0.01) resulted in a total of 2,839 windows of 250 nucleotides that were differentially 
methylated between the CLL and normal groups. There were more hypomethylated regions (2,062 windows) 
than hypermethylated ones (777 windows). The genomic annotations of all windows created by binning the 
human genome into adjacent 250-nucleotide windows are shown in Fig. 1A; introns and distal intergenic regions 
constituted most (86%) of the human genome, followed by promoter regions (7%). The genomic annotations of 
the differentially methylated regions are shown in Fig. 1B; they most frequently overlapped with distal intergenic 
regions, followed by introns and promoters. Hypomethylation was more prevalent than hypermethylation regard-
less of the type of annotation. The proportions of the differentially methylated regions were obtained by dividing 
the numbers in Fig. 1B by those in Fig. 1A; this revealed that promoters contained the highest proportion of the 
differentially methylated regions (0.08%) and were thus the preferential targets of differential methylation in CLL 
(Fig. 1C). Nevertheless, distal intergenic and intron regions contained the largest numbers of differentially meth-
ylated regions (Fig. 1B), highlighting the importance of differential methylation in these regions.

The proportions in Fig. 1C were tested with the two-tailed Fisher’s exact test (Table 1). Promoters and introns 
were the most significant; differential methylation was observed more often in promoters than would be expected 
by chance and less often in introns. Distal intergenic regions were the next significant genomic annotation and 
showed enrichment with differential methylation.

When visualized as a heatmap (Fig. 2), the differential methylation profiles indicated more hypomethylated 
regions than hypermethylated ones. Moreover, the CLL and normal groups were correctly separated by super-
vised hierarchical clustering with the methylation profile of the differentially methylated regions, as expected.

DMGs. The list of DMGs (i.e., genes that overlapped with differentially methylated regions) is provided as 
Supplementary Data S1; there were 1,507 DMGs (1,241 hypomethylated and 315 hypermethylated). Rarely, some 
of the DMGs showed both hypomethylation and hypermethylation in their genic regions (48 genes; 3%). For 
brevity, the top 40 hypermethylated and hypomethylated genes are shown in Supplementary Tables 1 and 2, 
respectively.

The DMGs were classified with respect to gene type (Fig. 3). Protein-coding genes were the most abun-
dant, followed by long noncoding genes such as long intronic noncoding RNAs, short noncoding genes such 
as microRNAs and small nucleolar RNAs, and others such as pseudogenes and unannotated nucleotides. Their 
proportions in the hypomethylated and hypermethylated DMG sets were similar.

Gene ontology (GO) biological processes and pathways over-represented in the DMG list.  
Functional enrichment analyses of the DMG lists identified a number of significantly over-represented GO terms 
and pathways; up to 30 categories were selected for each condition to examine functional categories specific to 
either hyper- or hypomethylation.
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Numerous immune processes and cancer-related GO terms were over-represented in both the hypo- and 
hypermethylated gene lists (Fig. 4, highlighted in bold), with the former being more prevalent.

With respect to genomic annotation, most GO terms were over-represented in the genes that showed differ-
ential methylation in introns (Supplementary Fig. 1) owing to the presence of many differentially methylated 

Figure 1. Genomic annotations of differentially methylated regions and their relative proportions with respect 
to background occurrences in the human genome. (A) Genomic annotation of all 250 nucleotide-long windows 
along the human genome. (B) Genomic annotations of the differentially methylated windows. (C) Proportion of 
differentially methylated windows out of all windows in particular genomic regions. UTR, untranslated region.

Genomic annotation P-value Odds ratio
95% confidence 
interval

Promoter <2.2e-16 1.987 1.772–2.222

Intron <2.2e-16 0.567 0.524–0.614

Distal intergenic 5.39e-12 1.297 1.204–1.397

3′UTR 0.000178 1.528 1.225–1.886

5′UTR 0.2395 1.488 0.713–2.742

Downstream 0.3491 1.195 0.793–1.731

Exon 0.7550 0.958 0.770–1.180

Table 1. The extent of association between genomic annotation and differential methylation as tested by two-
tailed Fisher’s exact test.
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regions. Some immune- and cancer-related GO terms were also over-represented in the genes that showed differ-
ential methylation in promoters and exons.

Over-represented pathways also included those that are directly related to immune processes and cancer 
(Fig. 5; the Kyoto Encyclopaedia of Genes and Genomes [KEGG] pathway database does not include CLL-related 
content). Overall, most pathways were over-represented in the gene lists that showed hypomethylation (Fig. 5) or 
differential methylation of introns (Supplementary Fig. 2). Some immune- and cancer-related pathways were also 
over-represented in the gene lists that showed differential methylation of promoters and exons.

The B-cell receptor signalling pathway, which plays a crucial role in the pathogenesis of CLL and is a thera-
peutic target, was the most significantly over-represented (Fig. 5). The DMGs in this pathway are shown in Fig. 6.

Figure 2. Hierarchical clustering of samples reflecting the profiles of normal and chronic lymphocytic 
leukaemia (CLL) samples regarding differentially methylated regions. Supervised hierarchical clustering 
correctly separates the CLL and normal (N) groups. The colour intensity is scaled within each row so that the 
highest methylation value corresponds to bright red and the lowest to bright green.

Figure 3. Gene type classification of differentially methylated genes (DMGs).
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Figure 4. Most significantly over-represented Gene Ontology (GO) terms analysed with respect to differential 
methylation. A maximum of 30 GO terms were selected for each track; the dot plot shows their p-values 
according to the displayed colour code. The statistical significance of a GO term increases with a redder tint. 
The number of differentially methylated genes (DMGs) belonging to a GO term increases with its size. The 
absence of a dot denotes insignificant over-representation of the corresponding GO terms under that particular 
condition. GO terms directly related to immune processes and cancer are shown in bold-type.

Figure 5. Most significantly over-represented pathways analysed with respect differential methylation. The plot 
was prepared in the same manner as in Fig. 4.
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Network-based prioritization of DMGs. We performed a network-based prioritization of the DMGs 
based on the assumption that a DMG that interacts with many known CLL-related genes is also likely to be func-
tionally relevant to CLL itself. A network of 1,094 nodes and 3,304 edges was obtained by linking DMGs to known 
CLL-related genes by protein-protein and protein-DNA interactions. For easier navigation, we first selected the 
10 hub DMGs with the strongest links to known CLL-related genes, then extracted a subnetwork that consisted 
of the top 10 hub DMGs and their known CLL-related gene interactors. The subnetwork comprised 203 nodes 
and 512 edges (Fig. 7).

The hub DMGs have the potential to influence or be influenced by the activities of their interacting partners; 
hence, differential methylation of the hub DMGs may have functional implications in CLL. Among the 10 hub 
DMGs revealed, six (STAT3, PTPN6, SYK, STAT5B, XPO1, and ABL1) had known CLL relevance (blue tint), 
whereas the remaining four (UBC, GRB2, CREBBP, and GAB2) did not. The former corroborated known data, 
while the latter demonstrates a novel finding.

Discussion
Our MBD-seq and subsequent bioinformatics analysis showed that Korean CLL shares similar features with 
Caucasian CLL in terms of frequent hypomethylation in intragenic regions11,17 and aberrant methylation in path-
ways related to B-cell development, immune processes, and cancer17,18. The network analysis identified 10 hub 
DMGs, 4 of which (UBC, GRB2, CREBBP, and GAB2) were reported as being CLL-related for the first time in our 
study, suggesting potential methylome differences between Korean and Western CLLs.

We identified a total of 2,839 differentially methylated regions, which comprise approximately 0.06% of the 
human genome. This proportion is comparable to that of previous studies, although most such studies did not 
investigate proportions and used different methodologies6,9,18. Differential methylation was observed not only 
in promoter regions but also in intragenic and distal intergenic regions, with a higher proportion of hypometh-
ylation than hypermethylation; this was consistent with the findings of a comparable MBD-seq-based study by 
Subhash et al.16 as well as a whole-genome bisulfite sequencing study by Kulis et al.19. While promoter hypermeth-
ylation is a well-known tumour suppressor mechanism, hypomethylation has not been as thoroughly investi-
gated. Nevertheless, global hypomethylation (particularly in the intragenic regions) has been noted as a hallmark 
of CLL and presumed to contribute to genomic instability and gene activation during the pathogenesis of the 
disease18. Examples of hypomethylation in oncogenesis include (i) cancer-linked hypomethylation in gene regu-
latory regions20,21 and (ii) hypomethylation of interspersed and tandem repeats that promote tumour formation 
or progression by fostering DNA rearrangements22,23. It has also been shown that CpG islands that are not associ-
ated with the 5′ region but are located in intergenic or intragenic CpG islands of any gene can perform important 
biological functions24.

Noncoding genes that were frequently hyper- or hypomethylated accounted for up to 20% of DMGs, while the 
remaining 80% were protein-coding. DNA methylation is a relatively stable modification causing transcriptional 
inactivation of both protein coding genes and non-coding regulatory microRNA genes25–27 and is therefore a 

Figure 6. Differential methylation of genes in the B-cell receptor signalling pathway. Hypo- and 
hypermethylated genes are indicated in green and red, respectively.
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main mechanism of aberrant gene silencing in cancer17. The dysregulation of long noncoding RNAs such as long 
intronic noncoding RNAs promotes carcinogenesis, disease progression, and metastasis in various cancers28,29 
including CLL30. These long noncoding RNA genes encode non-protein-coding transcripts of >200 nucleotides 
generated by RNA polymerase II, and their expression is tightly regulated in a cell type-specific and/or cellular 
differential stage-specific manner31. They comprised 12% of the DMGs in our study, and some were listed in the 
top 40 hypermethylated (including LINC00273 and LINC00839) as well as in the top 40 hypomethylated genes 
(such as LINC00348); none of these three genes have been reported in previous Western studies. Meanwhile, 
microRNA genes, which encode a class of single-stranded noncoding RNAs 19–25 nucleotides in length32, can 
either be oncogenic or tumour suppressive17, and their aberrant methylation has clearly been implicated in 
CLL pathogenesis in previous studies17,32. Previously reported microRNA genes that elicit epigenetic changes 
in Caucasian CLL include miR15a, miR16-1, miR-21, miR-29a, miR-34a, miR-139, miR-155, miR-574, miR-582, 
and miR120417,32. Aggressive and indolent CLLs exhibit a different microRNA profile, and high levels of miR-21 

Figure 7. Interaction subnetwork between the top 10 hub differentially methylated genes (DMGs) and known 
chronic lymphocytic leukaemia (CLL)-related genes. The top 10 hub DMGs are shown along the periphery of 
the network. Numbers in parentheses denote the node degree of the hub DMGs; the node size is scaled by its 
node degree.
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and miR-155 are associated with a greater mortality rate32. In our study, microRNA genes represented 5% of the 
DMGs, and four (MIR4436A, MIR4537, MIR4715, and MIR7850) that were among the top 40 hypermethylated 
genes have never been reported in previous Western studies. Further investigation on aberrant methylation of 
these novel long noncoding RNA and microRNA genes will provide a better insight into their roles in the patho-
genesis of CLL in Korean individuals.

GO and pathway analyses showed findings consistent with those of previous CLL studies in Caucasians; the 
most significantly over-represented GO terms included those for lymphocyte differentiation, immune system 
development, lymphocyte activation, B-cell differentiation, and/or B-cell activation17,18. The roles of the B-cell 
receptor signalling pathway genes SYK, PIK3AP1, PTPN6, MAP2K2, and NFATC1 in CLL pathogenesis have also 
been previously described33–37. SYK is a tyrosine kinase and is involved in the CD38 signal transduction pathway 
in CLL, and a selective Syk inhibitor is currently undergoing a clinical trial34. An expression study revealed that 
PIK3AP1 is involved in the B-cell receptor signalling pathway in CLL as shown via functional enrichment anal-
ysis37. PTPN6 encodes SHP-1 and is an important negative modulator of antigen-receptor signalling in lympho-
cytes; it is activated by NOTCH1, which has an important pathogenic role in CLL33. MAP2K2 is involved in the 
RAS-BRAF-MAPK-ERK pathway, and mutations in this gene have been observed in CLL34. NFATC1 activation 
by DNA hypomethylation in CLL correlates with clinical staging and can be inhibited by ibrutinib36. Our data 
demonstrated that CLL in Koreans shares common features with CLL in Caucasians in this regard.

Our network-based prioritization analysis identified genes that were differentially methylated and that are 
linked to many known CLL-related genes via protein-protein and protein-DNA interactions. Among the 10 hub 
DMGs revealed in our analysis, six (STAT3, PTPN6, SYK, STAT5B,and XPO1, and ABL1) had known CLL rel-
evance; hence, our results corroborated previous data. The remaining four (UBC, GRB2, CREBBP, and GAB2) 
have never been reported in previous CLL studies38–48. UBC represents a ubiquitin gene (ubiquitin C) and has 
been described in cancers infrequently. In a previous study, interaction analysis of biomarker genes revealed that 
UBC may have a major role in renal cancer38. GRB2 encodes growth factor receptor-bound protein 2 and has been 
described in cancers relatively frequently; as such, anti-cancer therapeutics targeting GRB2 are currently in devel-
opment48. CREBBP encodes chromatin-modifying enzymes such as the histone acetyl-transferases and has been 
studied in diffuse large B cell lymphoma, acute lymphoblastic leukaemia, and lung cancer41–45. GAB2 encodes 
the GRB2 associated binding protein 246 and has been studied in breast cancer, ovarian cancer, hepatocellular 
carcinoma, lung cancer, and melanoma47,48. The top three genes most relevant to CLL in our network were TP53, 
BCL2, and ZAP70. Among them, TP53 and ZAP70 interacted with the four novel hub DMGs. The interactions 
of UBC and CREBBP with TP53 represent post-translational regulation of the p53 protein via ubiquitination and 
acetylation49. GRB2 and GAB2 interacted with ZAP7050; the ZAP-70-mediated phosphorylation of the GRB2/
GAB2 protein complex serves as a scaffold for the assembly of downstream signalling proteins50. Taken together, 
the interactions between the four hub DMGs and the well-known CLL-related genes underscore their biological 
significance.

Some recent epigenetic studies of CLL provided new insights into the chromatin landscape of this dis-
ease19,51,52; our data can be regarded as building on such knowledge. Previous studies that aimed to identify 
CLL-specific methylation events compared CLL cells to normal CD19+ B cells in order to pinpoint the specific 
features that represent the epigenetic characteristics of CLL9,10,53,54. Recent epigenetic studies also compared the 
chromatin landscape of CLL cells and B-cells from different maturation stages19,51,52 and observed that a large pro-
portion of the differentially methylated sites overlap with those undergoing dynamic methylation during normal 
differentiation, mainly those of memory B-cells and bone marrow plasma cells19,51,52. This suggests that virtually 
all reported ‘CLL-specific’ differences reflected normal B cell maturation and are likely not causative of the dis-
ease51. They also reported that (i) early differentiation stages mainly displayed enhancer demethylation, which 
was associated with the upregulation of key B-cell transcription factors, and affected multiple genes involved in 
B-cell biology19; and (ii) CpGs losing methylation at any B-cell maturation stage were preferentially located in 
introns, intergenic regions, and repetitive elements19. As we did not compare the methylation patterns of our CLL 
cells to those of memory B-cells isolated from control individuals (as performed in previous Western studies), 
we infer that most of our differentially methylated regions (which were also identified in Western studies) might 
overlap with those of normal memory B-cells, and are maturation stage-specific rather than disease-specific. 
Nevertheless, our observation of over-represented B-cell receptor signalling pathway components and prevalent 
hypomethylation in the distal intergenic and intron regions were consistent with data from studies in which 
B-cells of different maturation stages were analysed separately, thereby affirming the credibility of our data. We 
infer that the common features shared with previous Western studies might have been derived from the chro-
matin landscape of normal memory B-cells, although the unique findings in our CLL samples (i.e., those which 
have not been reported in previous Western studies) differentiate Korean CLL from its Western counterpart. As 
Kulis et al. concluded, the changes shared during neoplastic transformation and normal differentiation may be 
epigenetic ‘passengers’, whereas those exclusively occurring in CLL cells, as we observed in our study, were likely 
epigenetic ‘drivers’ with a potential role in CLL development19.

A limitation of our approach is that we were unable to assess the expression statuses of genes speculated to be 
affected by differential hypo- or hypermethylation owing to the lack of RNA samples. Even though the main con-
sequence of aberrant promoter methylation is dysregulated gene expression, the consequences of aberrant hypo- 
or hypermethylation are not limited to the alteration of transcription. Kulis et al. also reported that they rarely 
observed a direct correlation between gene expression and DNA methylation, even in regulatory elements, which 
was similar to previous observations11,19,55,56. In their study comparing IGHV-mutated and IGHV-unmutated 
CLLs, Beekman et al. suggested that the different cellular origins of these two types of CLL do not necessarily 
imply differential chromatin activation, likely owing to the fact that the differential DNA methylation in the 
IGHV-mutated and IGHV-unmutated CLL-originating cells is independent of the differential expression of 
the target genes51. In fact, dysregulated methylation outside the promoter can affect carcinogenesis and other 
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conditions such as embryonic development, atherosclerosis, aging, and neural development via chromosomal 
instability57 or alternative splicing58. Thus, our methylation profiling data ought to be valuable even without con-
sidering gene expression, as they provide a comprehensive picture of aberrant hypo- and hypermethylation in 
Koreans with CLL.

In summary, we used MBD-seq to perform global methylation profiling of CLL in an Asian population for the 
first time. Our results showed that promoters were the preferential targets of differential methylation, as were dis-
tal intergenic and intron regions. Along with protein-coding genes, long intronic noncoding RNAs and microR-
NAs were frequently affected as well. Pathways related to immune processes and cancer were the main targets of 
aberrant methylation in Koreans with CLL, which is consistent with data from Caucasians. We also revealed novel 
candidate CLL-associated genes (UBC, GRB2, CREBBP, and GAB2) that closely interact with TP53 and ZAP70, 
implying the existence of differences between CLLs afflicting Asians versus Caucasians.

Methods
Study populations. Eight ethnically Korean patients diagnosed with CLL without IGHV mutations between 
May 2008 and July 2014 at Hallym University Sacred Hospital, Republic of Korea, were enrolled. CLL was diag-
nosed based on the World Health Organisation59,60 and 2008 International Workshop on Chronic Lymphocytic 
Leukemia-National Cancer Institute criteria61. Collected laboratory data included complete blood counts, bone 
marrow pathology, immunophenotyping, conventional karyotyping, and IGHV somatic hypermutation status. 
Five age-matched, voluntary donors were examined as healthy controls. The study was performed according to 
the guidelines of the Declaration of Helsinki and was approved by the Ethics Committee of Hallym University 
(No. HALLYM 2019-01-004-002). All subjects provided written informed consent to participate in this study.

MBD-seq library preparation and sequencing. Bone marrow buffy coats were collected from the 
patients; the median lymphoid cell percentage was 85.75% (range, 41.60–99.00%). CD19-positive B cells were 
collected from five healthy donors using magnetic bead sorting (EasySepTM; STEMCELL Technologies, Inc., 
Vancouver, Canada). Purity was confirmed using flow cytometry analysis (>95.0%). Genomic DNA was iso-
lated using the Promega Maxwell® 16 MDx Instrument. Genomic DNA (1 µg) was sheared to 200–400 bp using 
a Covaris LE220 sonicator; the fragments were then subject to methyl-CpG enrichment using the Invitrogen 
MethylMiner Methylated DNA Enrichment Kit, which uses a recombinant form of human MBD protein-2. The 
enriched methylated DNA fragments were eluted as a single enriched population with a 2,000 mM NaCl elution 
buffer. The eluted DNA was then used to generate libraries according to the standard Illumina protocol. Briefly, 
the DNA fragments were subject to end repair, A-tailing of the 3′ end, Illumina adapter ligation, size selection 
(aiming for 300–500 bp), PCR amplification, and validation using an Agilent Bioanalyzer. The libraries were then 
sequenced on the Illumina HiSeq 2000 platforms.

Pre-processing of sequencing data. FastQC was used to check the sequence quality of the 100 bp 
paired-end sequencing reads. Trimmomatic62 was used to clean the reads by removing adapter sequences, bases 
from the ends of the reads with quality <3, sliding windows of four bases with a mean quality <15, and reads 
shorter than 36 bp. The cleaned reads were aligned to the hg38 human genome with Bowtie263 using default 
parameters. The resulting mapped data in BAM format served as an input to subsequent differential methylation 
analysis.

Differential methylation analysis. The BAM files were inputted into the MEDIPS program64. The data for 
chromosomes 1–22 and M were selected for analysis. Sex chromosomes were excluded to avoid potential biases 
arising from X chromosome inactivation in samples from women. The genome was binned into adjacent win-
dows 250 nucleotides in length. Differential methylation analysis between the CLL and control groups was per-
formed at the window level. The parameter for data normalization and differential methylation analysis was set to 
edgeR and that for multiple testing correction was set according to the Benjamini-Hochberg procedure; default 
values were used for all other parameters. Windows with false discovery rates <0.01 were deemed differentially 
methylated. The methylation data are available at the Gene Expression Omnibus under the accession number 
GSE136986. The methylation levels of the differentially methylated windows were used for hierarchical clustering 
analysis to examine the separability of the CLL and normal sample groups. The methylation level of each window, 
as measured in log-counts per million values obtained from the edgeR R package65, was standardized using a 
z-transformation such that the row mean and variance were set to 0 and 1, respectively. Next, hierarchical cluster-
ing was performed in the EMA R package66 using the average linkage method with Pearson correlation analysis 
as the similarity metric.

Annotation of the differentially methylated windows. The window-level differential methyla-
tion analysis result from MEDIPS was inputted into the ChIPseeker program67. For each window, ChIPseeker 
assigns a corresponding Entrez Gene and one or more of the following annotations: distal intergenic, promoter 
(2 kb upstream to 0.5 kb downstream of transcription start site), 5′ untranslated region, exon, intron, 3′ untrans-
lated region, and downstream. Default values were used for all other parameters. After annotating the differ-
entially methylated windows, the list of DMGs was obtained. A gene was deemed a DMG if at least one of the 
windows that corresponded to it was differentially methylated, although there was usually more than one; as 
such, the DMG’s p-value and log2 fold change were set to the smallest window-level p-value and the average of 
window-level log2 fold change values, respectively. The DMGs were classified with respect to gene type by the 
scheme adopted by ‘Ensembl’ into four categories: protein-coding, long noncoding, short noncoding, and others 
(pseudogenes and unannotated).
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GO and pathway analysis. Functional enrichment analysis was performed using the clusterProfiler pro-
gram68 to identify prevalent biological themes in the DMG list using GO and KEGG pathway analyses, with 
significance set at a p-value < 0.05. For GO analysis, minGSSize = 20 and maxGSSize = 1,000 were applied. To 
compare the functional enrichment results between the directions of differential methylation and between 
genomic regions, a maximum of 30 GO terms or pathways were selected for each track, and their p-values were 
displayed side by side on a dot plot using the ‘clusterProfiler’ function. The KEGG69 pathway map for the B-cell 
receptor signalling pathway was rendered by the Pathview Web70.

Network-based prioritization of DMGs. We examined how well the DMGs interact with known 
CLL-related genes (per the DisGeNET database)71 in human protein-protein and protein-DNA interaction net-
works obtained using Cytoscape72 and the associated applications BisoGenet73 and ReactomeFIViz74.

We first downloaded the list of CLL-related genes by searching the DisGeNET website using the keyword 
‘chronic lymphocytic leukemia’; each of the CLL-related genes is annotated with supporting publications. From 
the obtained list, we removed genes that were annotated with only one publication to rule out potential false 
positives. Next, we constructed a network that links DMGs and known CLL-related genes; from BisoGenet, we 
retrieved the protein-protein interactions from all available sources as well as the protein-DNA interactions from 
the Biomolecular Interaction Network Database. We retrieved all available interactions from ReactomeFIViz, 
and excluded those that were only predicted. Gene symbols were used to query the interactions between genes in 
both applications; the two resultant networks were combined using Cytoscape’s ‘Merge’ function, and duplicate 
edges were then removed to yield a consolidated human interaction network. Node degree was obtained using 
Cytoscape’s ‘NetworkAnalyzer’ function75.

Data availability
The methylation data are available at the Gene Expression Omnibus under the accession number GSE136986.
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