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Abstract: The effects of the addition of nutrients (nitrate: N; phosphate: P; and vitamin B1) and trace
metals (iron: Fe; Copper: Cu; and selenium: Se) on the growth of Gymnodinium catenatum, which
was isolated from Korean coastal waters, were investigated. The Korean isolate of G. catenatum grew
under a wide range of concentrations of N and P. Whilst high concentrations of N (> N: P ratio of
23.5) did not stimulate the growth rate, an enhanced growth rate and cell density were observed
with the addition of P. The experimental addition of vitamin B1 revealed that G. catenatum is not
dependent on vitamin B1 for growth. Moreover, the addition of Fe and Cu resulted in no significant
differences in the growth patterns and rates of G. catenatum between the controls and treatments. It is
thus possible that growth of the Korean isolate of G. catenatum does not require high concentrations
of Fe and Cu. However, the cell densities were enhanced in the stationary phases of treatments upon
addition of Se, and the maximum cell densities were higher than those in the culture experiments
upon additions of other nutrient and trace metals. Our findings indicate that G. catenatum prefers P
and Se for proliferation, rather than other nutritional sources.
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1. Introduction

Paralytic shellfish toxins, which are produced by some marine toxic dinoflagellates and freshwater
cyanobacteria [1–3], can be accumulated in a wide variety of marine organisms through the food
web, and this accumulation can lead to outbreaks of paralytic shellfish poisoning (PSP) [2,4–6]. PSP
outbreaks have been reported globally and caused human intoxications and death, serious economic
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losses in fisheries industries, and negative impacts on marine ecosystems (e.g., [2,4,7,8]). Due to
such outbreaks, the toxicity, geological distribution, nutrient ecophysiology and classification of the
causative organisms have been studied intensively (e.g., [2,3]).

To date, about 12 species of Alexandrium, Pyrodinium bahamense and Gymnodinium catenatum have
been reported as the main toxic dinoflagellates responsible for PSP [3,9–16]. Of these, the PSP outbreaks
caused by G. catenatum have been frequently reported in Australia [17], Portugal [18], Spain [19],
Morocco [20], Japan [21] and Latin America [3]. According to Band-Schmidt et al. [3], blooms of
G. catenatum have been associated with outbreaks of PSP. The blooms of G. catenatum and related PSP
incidents have not been recorded to date in Korean coastal area; however, toxicity was reported from
isolates of G. catenatum collected from the southern coast of Korea [22]. Nevertheless, little is known
about the effects of environmental factors related to the growth of G. catenatum isolates in Korean
coastal waters.

Nutrients, together with light and temperature, are important factors in phytoplankton growth
and distribution in marine ecosystems [23,24]. In particular, there is evidence of strong relationships
between anthropogenic nutrient loading and harmful algal blooms [2,4,25,26]. An understanding of
environmental factors, such as nutrients, that can lead to the proliferation of harmful dinoflagellates is
important in predicting harmful algal blooms, as well as for developing management strategies to deal
with this threat. Despite extensive study of the effects of nutrients on the growth of some harmful
dinoflagellates through laboratory and field experiments, our knowledge of the effects of nutrients on
harmful dinoflagellates is quite poor (e.g., [27]). In addition, as most of the studies of harmful algal
blooms focusing on nutrients have primarily investigated the importance of macronutrients, such
as nitrate and phosphate [28,29], the effects of micronutrients, such as vitamins and trace metals, in
relation to the growth of harmful species has rarely been considered.

Early studies revealed that trace metals such as iron [30,31] and selenium [32] are important factors
in the development of some harmful algal blooms, and selenium, in particular, has been considered to
stimulate the growth of G. catenatum [33,34]. Couet et al. [35] also reported the over-production of
toxins of harmful dinoflagellates exposed to copper stress, and Tang et al. [36] discussed the significant
ecological role of B-vitamins in regulating the dynamics of harmful algal blooms. However, in Korean
coastal waters, the effects of nutritional factors including macronutrients on harmful species have rarely
been investigated, and most studies have focused on Alexandrium species. According to Lee et al. [37],
G. catenatum is distributed widely along the south coast of Korea, indicating that this species can be
regarded as potentially harmful species in Korean coastal areas [22]. In this study, to improve our
understanding of the ecophysiology of G. catenatum in Korean coastal waters, we aim to investigate
the growth of the Korean isolate of G. catenatum under different concentrations of nutrients and
trace metals.

2. Materials and Methods

2.1. Culture of Gymnodinium catenatum

A strain of Gymnodinium catenatum (LIMS-PS-2604) was obtained from the Library of Marine
Samples, Korea Institute of Ocean Science and Technology. This strain was established from
phytoplankton samples collected in the South Sea of Korea (34◦29’7.68” N, 128◦28’54.54” E) and
has been maintained at 20 ◦C and ca 100 µmol photons m−2 s−1 cool-white illumination (fluorescent
lamp) under a 12L:12D photo-cycle. The morphological features of G. catenatum were photographed
using an AxiCam MRc digital camera on an upright microscope (Axio Imager 2, Zeiss, Germany) and
a field emission scanning electron microscope (JSM 7600F, JEOL, Tokyo, Japan), which are shown in
Figure 1. The phylogeny of the strain was reported in a previous study [38].
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Figure 1. Light and scanning electron micrographs of a Korean isolate of Gymnodinium catenatum
(culture strain LIMS-PS-2604). (A) Surface focus of ventral view showing the cingulum. (B) Surface
focus of dorsal view showing the cingulum. (C) Deeper focus of dorsal view showing the nucleus
(n). (D) ventral view of a two-celled chain showing apical groove (arrowhead) and transverse flagella
(arrow). (E) dorsal view of a two-celled chain showing cingulum and transverse flagella (arrows). (F,G)
Details of apical groove, with small pores (arrows). Scale bars: A–E = 10 µm; F–G = 1 µm.

Experimental cultures were established in 2 L culture bottles (SPL, Pocheon, Korea) containing f/2
culture medium (Marine Water Enrichment Solution, Sigma Aldrich, St. Louis, MO, USA) without
silicate, prepared with sterile sea water at 20 ◦C and ca 100µmol photons m−2 s−1 cool-white illumination
(fluorescent lamp) under a 24L:0D photo-cycle on a roller apparatus (Wheaton, IL, USA). Cultures
from the exponential growth phase were used for the experiments.

2.2. Growth Experiment

Surface seawater collected from the East China Sea (32◦00’ N, 127◦00’ E) was used to prepare the
culture medium with controlled concentrations of nitrate (N), phosphate (P), vitamin B1, Iron (Fe) and
Copper (Cu). The concentrations of dissolved inorganic nitrogen (sum of NH4

+, NO2
−, NO3

−) and
phosphorus (PO4

3−) in the seawater were 7.4 and 0.6 µM, respectively, as measured by a nutrient auto
analyzer (QuickChem 8000, Lachat, Loveland, CO, USA). For the selenium (Se) addition, seawater was
collected from a location off the Korean coast (37◦32’26.62” N, 130◦50’43.31” E). The seawaters were
filtered through a 47 mm membrane filter and autoclaved for all experiments.

In this study, we carried out two major experiments involving nutrients (N, P and vitamin B1)
and trace metals (Fe, Cu and Se). The basal culture medium used to control the concentrations of
nutritional factors was the f/2 culture medium without silicate (f/2-Si culture medium), and the N:P
ratio in the stock solution with this culture medium was 24.2 (the values of nitrate and phosphate
calculated from the collected seawater and the culture medium). Treatments were made by adding or
reducing the concentrations of the nutrients and trace metals, and the treatment without addition of
nutritional factors was used as a control (Table 1). However, as the original recipe of the f/2 culture
medium does not include Se, the Se concentration was varied through the addition of selenous acid to
a solution of the basal culture medium (Table 1).
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Table 1. Nutrient and trace metal concentrations (µM) used in the experimental design. N:P ratio
in parentheses.

Control Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5

Nutrient
N None added 8.82 × 101 (2.6) 8.82 × 102 (24.2) 1.76 × 103 (48.1) - -
P None added 3.62 × 1 (210.9) 3.62 × 101 (24.2) 7.24 × 101 (12.2) - -

Vitamin B1 None added 2.96 × 10−2 2.96 × 10−1 5.92 × 10−1 - -

Trace Metal
Fe None added 1.17 × 1 1.17 × 101 2.34 × 101 - -
Cu None added 3.93 × 10−3 3.93 × 10−2 7.86 × 10−2 - -
Se None added 10−5 10−4 10−3 10−2 10−1

Growths of Gymnodinium catenatum were tested in stock solutions supplied with different
concentrations of nutrients and trace metals and filtered and autoclaved seawater was used to make
the stock solutions. Twenty-six stock solutions with target concentrations of nutrients and trace metals
were made (Table 1), and 30 mL of each solution was added to separate 50 mL Pyrex tubes. The
subcultures of G. catenatum for the experiments were established in 2 L culture bottles (SPL, Pocheon,
Korea) containing individual nutritional source-poor media, and these were used for inoculation into
experimental tubes. G. catenatum in concentrations ranging from 100 to 200 cells/mL was inoculated
into the 50 mL Pyrex tubes. The tubes were placed in incubators and incubated at 20 ◦C and ca 100
µmol photons m2 s−1 cool-white illumination (fluorescent lamp) under a 14L:10D photo-cycle. All
experiments were conducted in triplicate.

2.3. Calculation of Growth Rate

Culture growth was monitored at 2 day intervals for 32 days and determined using an in vivo
fluorometer (Turner Designs Model 10-AU, Sunnyvale, USA), and the fluorescence data were used to
calculate specific growth rates. The regression equation for in vivo fluorescence values provided a
good fit to the observed cell densities; the adjusted r2 value for Gymnodinium catenatum was >0.99 (data
not shown). To estimate the specific growth rate (µ) of G. catenatum, we used the following equation:

µ = log2 (Nt − N0) / t1 − t0 (1)

where N0 and Nt are the initial (t0) and final (t1) in vivo fluorescence values during the incubation
experiments, respectively. The in vivo fluorescence values estimated during the logarithmic growth
phase were used to obtain the specific growth rate.

3. Results and Discussion

3.1. Growth of Gymnodinium catenatum under Different Concentrations of N, P and Vitamin B1

The growth curves and rates of Gymnodinium catenatum cultures exposed to different concentrations
of nutrients (N, P and vitamin B1) are shown in Figure 2 and Table 2. In all the nutrient treatments,
G. catenatum culture grew consistently during days 2–20 (Figure 2). In the N control, and the treatments
1 and 2, G. catenatum entered the senescence phase from day 24, following an stationary phase for
8 days; however, in treatment 3, with the addition of 1.76 × 103 µM nitrate, the stationary phase
continued after an incubation of 14 days (the exponential growth phase). The pattern in treatment
3 was observed with low cell density, and the growth rate (0.11 day−1) was also the lowest. The
maximum cell density (1389 cells mL−1) was observed in treatment 2 (Table 2), and the control and
treatments 1 and 2 had similar growth rates (0.18–0.21 day−1). Compared with the N control and
the treatments, the high growth rates of G. catenatum in the P addition experiments were observed
in treatments 2 (addition of 3.62 × 101 µM phosphate) and 3 (addition of 7.24 × 101 µM phosphate),
with high cell densities (764 and 909 cells mL−1) (Table 2); however, the maximum cell density was
lower than that for the N treatments. Low growth rates were observed in the control (0.10 day−1) and
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treatment 1 (0.08 day−1), with low cell densities (Table 2), and the growth rate in treatment 3 with P
addition was higher than that in N treatment 3. G. catenatum grew consistently until day 22 and then
entered a stationary phase, and the senescence phase was not observed until 32 days of incubation.
This growth pattern was similar to that observed in N treatment 3.

Figure 2. Growth curves and rates of Gymnodinium catenatum culture exposed to different nitrate (N),
phosphate (P) and vitamin B1 concentrations.

Table 2. Growth rates (day−1) and maximum cell densities (cells mL−1) of Gymnodinium catenatum in
the controls and treatments with nutrients and trace metals. Maximum cell density in parentheses.

Control Treatment 1 Treatment 2 Treatment 3 Treatment 4 Treatment 5

Nutrient
N 0.18 (862) 0.21 (1214) 0.20 (1389) 0.11 (485) - -
P 0.10 (464) 0.08 (455) 0.16 (764) 0.14 (909) - -

Vitamin B1 0.17 (545) 0.12 (699) 0.12 (561) 0.12 (540) - -

Trace Metal
Fe 0.14 (851) 0.15 (1125) 0.16 (1310) 0.14 (852) - -
Cu 0.17 (1055) 0.14 (986) 0.15 (1071) 0.17 (1058) - -
Se 0.17 (993) 0.16 (1391) 0.16 (1388) 0.15 (1811) 0.16 (2021) 0.15 (1862)

Band-Schmidt et al. [39] investigated the growth rates of G. catenatum strains under different
growth conditions, and reported the growth rates of a strain (established from Bahía Concepción
Gulf of California, Mexico) tested in f/2 medium at 20◦C and ca 100 µmol photons m−2 s−1 cool-white
illumination (fluorescent lamp) under a 12L:10D photo-cycle, which is similar to the conditions described
here, ranging from 0.28 to 0.32 day−1. These growth rates are higher than those obtained for f/2-Si
culture medium (referred to as treatment 2) in the present study. However, Bustillos-Guzmán et al. [40]
reported that the growth rate of G. catenatum culture established from Concepción Bay, Gulf of California
is 0.24 day−1 (the N:P ratio of 23.5), which is similar to own observations. This finding indicates that
the growth rate of G. catenatum can vary within strains, or can depend on different geographical strains.
Bustillos-Guzmán et al. [40] also found that the maximum cell density for treatment with a N:P ratio of
23.5 is higher than those for treatments with low N:P ratios (5.4 and 9.2), and that higher N:P ratios
than 23.5 can produce intermediate densities. This result accords with our observation that treatment 2
with a N:P ratio of 24.2 produce a maximum cell density. However, in this case, treatment 3, with the
addition of a relatively high N concentration (a N:P ratio of 48.1), had the lowest maximum cell density



Sustainability 2020, 12, 4992 6 of 12

(485 cells mL−1) among the control and all treatments, indicating that higher N:P ratios than 24.2 do
not increase the growth rate and cell density of Korean isolates of G. catenatum.

Interestingly, although the cell density in treatment 3 was lower than those in the control and
other treatments, no senescence phase was observed in treatment 3. The senescence phase is observed
when nutritional sources such as nitrate and phosphate in the culture medium are lower. Consequently,
while the addition of a high N concentration (or >N:P ratio of 24.2) did not stimulate growth rate
or cell density in the Korean isolate of G. catenatum, it can nevertheless have a positive effect on the
maintenance of cell density. According to Bustillos-Guzmán et al. [40], G. catenatum may have a
high storage capacity for phosphorus and nitrogen. This indicates that under N sufficient condition,
G. catenatum utilizes a N storage strategy for maintaining cell density.

In contrast to the additions of N, additions of P stimulated the growth rate and cell density
of G. catenatum (Figure 2). According to Oh et al. [41], under P-limited conditions the growth of
G. catenatum can be stimulated by the addition of dissolved organic phosphorus (DOP). DOP can act
as an additional source of P for microorganisms in a marine ecosystem in which dissolved inorganic
phosphorus is seasonally depleted [42], and G. catenatum can take advantage for the uptake of P from
DOP [41]. In addition, Yamamoto et al. [43] concluded that in the P-depleted condition, G. catenatum
may be able to form blooms in Hiroshima Bay, Japan, with a higher affinity for DOP [43]. These
observations indicate that sources of P are an important nutritional factor in enhancing the growth of
G. catenatum. However, as in this study the additions of both N and P resulted in similar maximum
cell densities (Table 2), sources of P alone certainly favor neither the enhancement of cell density of
G. catenatum nor bloom formation. In the growth curve for the P control and treatments, no senescence
phase was observed for the 32-day incubation, which differs from the growth pattern seen for the N
control, and for treatments 1 and 2 with moderate concentrations of N. This may be related to the
storage strategy for P, as well as for a high N concentration, suggesting that G. catenatum may be able to
make use of one of two nutritional sources for maintaining cell density, when either N or P is depleted
or sufficient.

Tang et al. [36] reported that vitamins are specifically important to the occurrence of harmful algal
blooms, and Gobler et al. [44] observed the enhancement of large dinoflagellates by the enrichment of
coastal waters with vitamin B1 and B12. However, in this study the addition of vitamin B1 did not
stimulate the growth rate of G. catenatum, and the highest growth rate of G. catenatum was observed in
the control without addition of vitamin B1 (Figure 2), and the maximum cell density was observed
for the treatment 1 (addition of 2.96 × 10−2 µM vitamin B1) (Figure 2). Although we did not measure
the concentration of vitamin B1 in the seawater used to make the solutions, neither the increased
growth rate nor maximum cell density seem to be related to high concentration of vitamin B1. In
addition, despite the fact that the culture medium for the controls and treatments in this experiment
contained N, P, and vitamin B12, significant increases in growth and cell density of G. catenatum were
not observed, reflecting the fact that G. catenatum does not require these vitamins for growth. According
to Croft et al. [45], more than 20% of the 306 microalgal species surveyed are auxotrophs for the vitamin
B1, and Tang et al. [36] reported that, among 45 species of dinoflagellates investigated, the numbers
of auxotrophs for the vitamin B1 are 49%, which is lower than the percentage of auxotrophs for the
vitamin B12 (91%). In addition, according to Gobler et al. [44], vitamin B1 is present in coastal waters at
concentrations greater than vitamin B12, suggesting a possible preference of some dinoflagellates for
vitamin B12 over vitamin B1 for growth. In that case, given that the vitamin B12-dependent species
must be able to obtain the vitamin from an external source such as bacteria [46], more detailed studies
are required to clarify the relationship between vitamin uptake of G. catenatum and the presence of
bacteria. Nevertheless, in the addition experiments of vitamin B1, an interesting observation was that
the growth pattern of G. catenatum was similar to those of the N control, and, in treatments 1 and 2,
that the senescence phase was observed from day 22 following the stationary phase. This indicates
that even in a culture in which N and P are both depleted by uptake, G. catenatum does not require
vitamin B1 for growth. However, further studies are still needed to clarify the relationship between the
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vitamin requirement of G. catenatum and the concentration of N under conditions that other nutritional
sources are depleted.

3.2. Growth of Gymnodinium catenatum under Different Concentrations of Fe, Cu and Se

The growth curves and rates of Gymnodinium catenatum culture under different concentrations
of trace metals (Fe, Cu and Se) are shown in Figure 3 and Table 2. On additions of Fe and Cu, no
significant differences were observed in the growth patterns and rates between control and treatments.
For the addition of Fe, G. catenatum grew consistently in the control and all treatments for days 1–22
and then entered a stationary phase. A senescence phase was not observed. The growth rates in this
experiment were between 0.14 and 0.16 day−1. For Cu addition, both the growth curves and the rates
(0.14–0.17 day−1) were similar to those seen for Fe addition, although G. catenatum grew until day 18
before entering a stationary phase. The senescence phase was not observed in this experiment. The
growth patterns for the Fe and Cu addition were similar to that for P addition. The maximum cell
densities for Fe and Cu addition were 1310 cells mL−1 and 1071 cells mL−1, respectively (Table 2), and
both were observed in treatment 2 with additions of 1.17 × 101 µM Fe and of 3.93 × 10−2 Cu.

Figure 3. Growth curves and rates of Gymnodinium catenatum culture exposed to different iron (Fe),
copper (Cu) and selenium (Se) concentrations.

The culture media for the control and treatments in these experiments contained N, P, and
vitamins, all of which can affect growth and cell density in G. catenatum. In this culture, additions
of Fe and Cu did not seem to enhance the growth rates of G. catenatum, given that there were no
significant differences in growth curves or rates between the treatments and controls without the
addition of Fe and Cu (Figure 3). Fe and Cu are essential elements for phytoplankton, and play an
important role in many of the biochemical and metabolic processes involved in cell growth [47–49].
Some studies recorded that the growth of Protoceratium reticulatum and Alexandrium tamarense increased
with increasing Fe concentrations [50,51], although in contrast the cell growth of Scrippsiella trochoidea
was inhibited by an increase in Fe [52]. Other studies reported a significant negative effect of Cu on
the growth of dinoflagellates such as A. catenella, Ostreopsis cf. ovata [35,53]. These findings indicate
that Fe and Cu requirements can vary greatly among phytoplankton. The basic knowledge of the Fe
and Cu requirements of G. catenatum is lacking to date; however, our results indicate that elevated
trace metal (Fe and Cu) concentrations do not increase the growth and cell density of G. catenatum in
nutrient rich waters.

There has been considerable interest in the Se requirements of harmful algal species
(e.g., [32,33,50,54]), suggesting that the addition of Se to a culture medium stimulates growth. In
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particular, culture experiments show a clear requirement for Se by G. catenatum [54]. In our experiment,
Korean isolates of G. catenatum could grow in an f/2 culture medium without Se addition (referred to
as the control), however the growth was more elevated when Se was added (Figure 3). The maximum
cell densities in treatments 3, 4 and 5 were twice as high as that of the control, which were also higher
than those of other nutrient and trace metal sources in this study (Table 2). There were no significant
differences in growth rates (0.15–0.17 day−1) between the control and the treatments. In both the
control and the treatments, G. catenatum grew until day 16 or 20 before entering a stationary phase, and
a senescence phase was not observed. This growth pattern was similar to those seen in the P, Fe and
Cu addition experiments.

According to Boisson et al. [55] and Price et al. [56], Se is either essential for some phytoplankton in
low concentrations or it cannot enhance growth of phytoplankton. This indicates that Se requirements
can vary among phytoplankton, and that phytoplankton can have an optimal range of Se for growth.
In Se addition, no obvious differences in cell densities of G. catenatum were observed until the end of
the exponential growth phase, resulting in similar growth rates between the control and treatments.
However, cell densities were increased in the stationary phases of treatments 3, 4 and 5 with addition
of Se. This result suggests that concentrations greater than 10−3 µM of Se can enhance cell densities
or biomass yield in culture experiments, although we did not measure the concentration of Se of
the seawaters used for making the solutions. According to Doblin et al. [32], the Se requirement
of G. catenatum varies between strains obtained from Australia, Spain and Japan, with addition of
selenium at concentrations in the range 10−9–10−7 M causing a variable increase in growth and biomass
yield. These Se requirements also differ from that of the Korean isolate of G. catenatum. It is thus
possible that the growth of G. catenatum can be enhanced for a wide range of concentrations of Se.

3.3. Proliferation Potential of Gymnodinium catenatum and Nutritional Conditions in Korean Coastal Waters

According to Band-Schmidt et al. [57], blooms caused by G. catenatum have been associated with
an increase in nutrients, mainly by nitrogen compounds in the water column. In our study, N seems to
be one of the most important nutritional factors in the growth of the Korean isolate of G. catenatum,
however the G. catenatum prefers high concentrations of P and Se, rather than preference to N. In a
previous study, it was reported that the maximum cell density of the Korean isolate of G. catenatum in
laboratory experiments was observed at 20 ◦C, which is commonly recorded in summer in Korea [38].
According to Koo [58], in the southern coastal area of Korea from which the isolate of G. catenatum
was obtained, average N and P concentrations were 0.8 and 0.1 µM L−1 in summer, respectively. This
indicates that P can be a limiting factor for phytoplankton growth in Korean coastal waters, and
because of this, in summer G. catenatum may prefer high concentration of P for the growth.

According to Koo [58], Cho [59] and Jang et al. [60], low levels of N and P in summer could be a result
of the uptake of dinoflagellates, among which Margalefidinium polykrikoides (= Cochlodinium polykrikoides),
Prorocentrum obtusidens (= P. donghaiense), and Alexandrium species are well known to dominate in
Korean coastal waters in summer, causing dense blooms (e.g., [61–64]). The maximum growth rates
of these species in the laboratory are higher than that of G. catenatum (e.g., [65–67]), indicating that
G. catenatum may be at a disadvantage beside the more the dominant species in terms of nutrient
competition. Consequently, proliferation of G. catenatum is not expected in summer of Korean coastal
area. However, as during summer, after rainfall events, riverine input of inorganic Se and its interaction
with dissolved organic matter (DOM) can be a critical factor for bloom initiation of G. catenatum [34],
this species may have a competitive advantage if Se, P and DOM loading after rainfall is increased in
Korean coastal waters.
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