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Simple Summary: Non-coding RNAs such as microRNAs, long non-coding RNAs, and circular
RNAs contribute to the development and progression of hepatocellular carcinoma through epigenetic
association. Long non-coding RNAs and circular RNAs act as competing endogenous RNAs that
contain binding sites for miRNAs and thus compete with the miRNAs, which results in promotion
of miRNA target gene expression, thereby leading to proliferation and metastasis of hepatocellular
carcinoma. Competing endogenous RNAs have the potential to become diagnostic biomarkers and
therapeutic targets for treatment of hepatocellular carcinoma.

Abstract: The three major members of non-coding RNAs (ncRNAs), named microRNAs (miRNAs),
long non-coding RNAs (IncRNAs), and circular RNAs (circRNAs), play an important role in
hepatocellular carcinoma (HCC) development. Recently, the competing endogenous RNA (ceRNA)
regulation model described IncRNA/circRNA as a sponge for miRNAs to indirectly regulate miRNA
downstream target genes. Accumulating evidence has indicated that ceRNA regulatory networks are
associated with biological processes in HCC, including cancer cell growth, epithelial to mesenchymal
transition (EMT), metastasis, and chemoresistance. In this review, we summarize recent discoveries,
which are specific ceRNA regulatory networks (IncRNA/circRNA-miRNA-mRNA) in HCC and
discuss their clinical significance.

Keywords: microRNA; long non-coding RNA; circular RNA; competing endogenous RNA;
hepatocellular carcinoma

1. Introduction

Hepatocellular carcinoma (HCC) is one of the most commonly diagnosed cancers and highly
lethal malignancies. There have been 42,810 new cases and 30,160 deaths in the United States in
2020 [1]. Risk factors for HCC are hepatitis B virus (HBV) or hepatitis C virus (HCV) infection,
alcohol consumption, nonalcoholic fatty liver disease (NAFLD), non-alcoholic steatohepatitis (NASH),
and hereditary diseases [2-7]. HCC patients are treated with potentially curative resection in
approximately 30—40% of cases; however, these patients still have a poor prognosis because of the high
frequency of metastasis and recurrence [8-10]. During HCC progression, cellular changes, including
inflammation, hypoxia, and the tumor microenvironment are important as various molecular events
can occur. There are major signal transduction pathways that promote HCC, including Myc, MAPK,
PI3K, WNT, and JAK [11-14]. Despite these well-known signaling pathways, there is still inadequate
information to understand HCC progression. Thus, novel target molecules are urgently required for
the application of diagnostic biomarkers and therapeutic agents.
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Non-coding RNAs (ncRNAs) were traditionally considered “junk genes.” Recently, various ncRNAs
have been identified by developing next-generation sequencing techniques and found to play a critical role
in the regulation of gene expression by binding to promoters or directly interacting with proteins [15-17].
Accumulating evidence has shown that ncRNAs are involved in normal cellular processes, but their
dysregulation is associated with disease progression, including cancer [18,19]. Furthermore, dysregulated
non-coding RNAs are associated with HCC initiation, progression, and metastasis [20].

Long ncRNAs are longer than 200 nucleotides, generally do not code for proteins, and function
as master regulators. Numerous studies have revealed the biological contributions of IncRNAs
as regulators of transcription, modulators of mRNA processing, and organization of nuclear
domains [21,22]. However, dysregulated IncRNAs are involved in the pathological processes of
cancers, including cell growth, survival, and differentiation by functioning as oncogenes or tumor
suppressors [23,24].

Circular RNAs are endogenous ncRNAs that lack 5" and 3’ ends and are products of backsplicing
on precursor mRNAs [25]. CircRNAs are evolutionarily conserved and have high stability because of
their circular structure; thus, they are inherently resistant to RNase activity. In addition, several studies
have shown that there are specific miRNA binding sites in circRNA sequences. Therefore, recent
studies have focused on the ability of miRNA sponges to regulate gene expression. Furthermore,
increasing evidence shows that aberrant expression of circRNAs can be mediated in cancer progression
due to its important biological function, as a miRNA sponge [26,27].

Short ncRNAs include microRNA (miRNA), small interfering RNA (siRNA), snoRNA, rRNA,
tRNA, and Piwi-interacting RNA (piRNA) [28,29]. Among them, most studies have focused on
miRNAs. Most miRNAs are transcribed by RNA polymerase II; however, small groups of miRNAs
are transcribed by polymerase III. Micro RNAs are single-stranded RNAs and play a role as negative
gene regulators by base pairing to partially complementary sites on the target mRNA 3’-untranslated
region (UTR) [30,31]. When miRNAs bind to target mRNAs, target genes undergo translation
repression or decay (Figure 1) [32,33]. A single miRNA can regulate multiple targets containing
specific miRNA response elements (MREs). In addition, a single RNA contains multiple MREs;
therefore, multiple miRNAs can regulate a single RNA [34]. Abnormal expression of miRNAs can affect
cancer development, including cell proliferation, angiogenesis, apoptosis, and cell motility [35-40].
Several researchers have found that molecular mechanisms influence carcinogenesis [41,42]. There are
two types of miRNAs that play roles in cancer (including HCC), tumor suppressor miRNAs and
onco-miRs [43-45].

In the past few years, most miRNA studies have focused on the unidirectional regulation of target
transcripts; however, competitive miRNA binding has been observed using artificial miRNA sponges,
which act as inhibitors of multiple miRNAs [46—48]. The first natural miRNA sponge was identified
in Arabidopsis thaliana, in which it sequestered miR-399 and inhibited its activity by “target mimicry.”
Most miRNA targets are cleaved by miRNAs in plants owing to their almost perfect miRNA match.
However, the miR-399 motif on IPS1 contains a mismatched loop at the miRNA binding site that
eliminates cleavage. Therefore, IPS1 can act as a miR-399 sponge and change the stability of its target,
PHO2 mRNA [49,50]. In animal cells, Ebert et al. observed similar phenomena: artificial overexpression
of miRNA binding sites leads to upregulation of miRNA targets acting as RNA sponges [51]. Since 2011,
this kind of post-transcriptional regulation has been described by the “competing endogenous RNA
(ceRNA)” model, which describes competitive binding between sponge RNA and miRNA target genes
and regulation of miRNA target gene activity (Figure 2) [52]. Importantly, numerous studies have
shown that IncRNAs or circRNAs can act as ceRNAs containing miRNA-binding sites. Therefore,
miRNAs can be suppressed by increasing the stability of miRNA target mRNAs. Notably, this ccRNA
mechanism has been discovered in diverse diseases, including multiple cancers [53,54].
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Figure 1. MicroRNA biogenesis. The primary miRNA (pri-miRNA) is transcribed by RN A polymerase II
(RNA Pol IT). The microprocessor complex, Drosha and DiGeorge Syndrome Critical Region 8 (DGCRS),
cleaves the pri-miRNA to produce the precursor miRNA (pre-miRNA). The pre-miRNA translocates to
the cytoplasm in an Exportin-5/RnaGTP-dependent manner. TAR RNA-binding protein (TRBP) and
Dicer1 cleave the pre-miRNA to produce the mature miRNA duplex. The 5p or 3p of the miRNA
duplex is loaded into the miRNA-induced silencing complex (miRISC). Finally, the miRISC binds to
target mRNAs to induce translational repression or mRNA decay.
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Figure 2. Biogenesis of long non-coding RNA (IncRNA, top left), circular RNA (circRNA, bottom left),
microRNA (miRNA, right), and the role of Inc/circRNA as competing endogenous RNAs (ceRNAs,
center). Different types of ceRNAs including IncRNA and circRNA regulate the miRNA target mRNA
expression by competing for miRNA binding.

Understanding the role of ncRNAs in tumorigenesis is a major challenge in recent molecular
oncology. Therefore, in this review, we introduce the mechanism of the ceRNA network between
IncRNA/circRNAs and miRNAs and discuss its possible role in HCC progression.

2. Long Non-Coding RNA and microRNA Networks in HCC

Although most IncRNA functions are unknown, several functional studies have shown that they
are closely associated with cancer progression. Growing evidence indicates that their tumorigenicity
may be mediated by ceRNA regulatory mechanisms. In this section, we present the details of the
regulatory network between miRNAs and IncRNAs in HCC from recent and prominent studies (Table 1).
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Table 1. Long non-coding RNA and microRNA networks in HCC.

IncRNAs Target miRNA  Target Genes of miRNA Function Reference
Overexpression of IncRNAs in HCC
SNHG11 miR-184 AGO2 FICC proliferation, [55]
migration, autophagy
CCAT1 let-7 HMGA2, c-MYC HCC proliferation, [56]
migration
SNHG16 let-7b-5p CDC25B _ Cellcycle, [57]
migration/invasion
HOXA-AS2 miR-520c-3p GPC3 Cell cycle, apoptosis, [26]
migration/invasion
CDKN2B-AS1 let-7¢-5p NAPILI Cell cycle, apoptosis, [58]
migration/invasion
FEZF1-AS1 miR-4443 HCC proliferation, [59]
metastasis
H19 miR-326 TWIST HCC proliferation, [60]
metastasis
miR-30a-5p Vimentin HCC proliferation, [61]
MALATI miR-146b-5p TRAF6 metastasis [62]
FOXD2-AS1 miR-206 ANXA2 HCC proliferation, [63]
metastasis
TINCR miR-214-5p ROCK1 HCC proliferation, [64]
metastasis
SNHG15 miR-490-3P HDAC2 HCC proliferation, [65]
metastasis
SNHG8 miR-149-5p PPMIF HCC proliferation, [66]
metastasis
FLVCRI-AS1 miR-513¢ MET HCC proliferation, [67]
metastasis
ROR miR-145 ZEB2 HCC metastasis [68]
LINC00460 miR-485-5p PAKI HCC proliferation, [69]
angiogenesis
LINC00488 miR-330-5p TLN1 HCC proliferation [70]
DSCR8 miR-485-5p FZD7 Wnt/p-catenin signaling (71]
pathway
DBH-AS1 miR-138 FAK/Src/ERK pathway [72]
TUG1 miR-144 JAK2/STAT3 pathway 73]
SNHG12 miR-199a/b-5p MLK3 NF-«kB pathway [74]
SNHG6-003 miR-26a/b TAK1 p38 pathway [75]
UCA1 miR-216b FGFR1 FAFRI/ERK signaling [76]
pathway
NEAT1 miR-204 ATG3 HCC autophagy process [77]
CCAT1 miR-181a-5p ATG7 HCC autophagy process [78]
PVT1 miR-365 ATG3 HCC autophagy process [79]
Cellular senescence
miR-22-3P SIRT1 nesce [80]
MIAT miR-520d-3p EPHA? HCC prohfer-atlon, 181]
metastasis
Downregulation of IncRNAs in HCC
GAS5 miR-21 PTEN Tumor suppressor [82]
SNHG16 has-miR-93 Tumor suppressor, 5>-FU [85]
chemoresistance
XIST miR-497-5p PDCD4 Tumor suppressor [84]
EPB41L4A-AS2 miR-301a-5p FOXL1 Tumor suppressor [85]
DGCR5 miR-346 KLF14 Tumor suppressor [86]
MIR31HG miR-575 ST7L Tumor suppressor [87]
LINCO00657 miR-106a-5p PTEN Tumor suppressor [88]
TUSC?7 miR-10a EPHA4 Tumor suppressor [89]

2.1. Owverexpression of IncRNAs Promotes HCC Proliferation and Metastasis via Sponging of Tumor
Suppressing miRNAs

In a IncRNA microarray assay, SNHG11 was overexpressed and associated with poor prognosis
in HCC. To regulate HCC proliferation, SNHG11 was negatively regulated by miR-184, which directly
targets AGO2. In HCC tissues, SNHG11 was negatively correlated with miR-184 and positively
correlated with AGO2 expression [55]. The IncRNA CCAT1 was overexpressed in HCC tissues and
sponged miRNA let-7 leading to upregulation of HMGA2 and ¢-MYC expression [56]. To regulate the
cell cycle, IncRNA SNHG16 absorbed miRNA let-7b-5p, and SNHG16 promoted the G2/M transition
via regulation of the let-7b-5p/CDC25B axis [57]. In addition, knockdown of IncRNAs HOXA-AS2 and
CDKN2B-AS1 induced cell apoptosis via G1 arrest. HOXA-AS2 sponged miR-520c-3p and let-7c-5p,
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and upregulated GPC3 and NAPIL1 expression by downregulating miR-520c-3p and let-7c-5p [26,58].
In addition, overexpression of FEZF1-AS1 and H19 in HCC sponged miR-4443 and miR-326 leading
to HCC growth and metastasis, respectively. MiR-326 directly targeted the transcription factor
TWIST. Subsequently, downregulation of miR-326 by H19 induced TWIST expression leading to HCC
development and metastasis [59,60].

In HCC metastasis, high levels of MALAT1 and FOXD2-AS]1 increase vimentin and ANXA2
expression by sponging miR-30a-5p and miR-206, respectively. In a migration/wound healing
assay, siMALAT1 and siFOXD2-AS1 treatment reduced the migration and wound healing rate
compared to the siNegative control by reduction of TWIST1/ANXA?2 expression and upregulation of
miR-30a-5p and miR-206 [61,63]. In addition, IncRNA MALAT1 sponged miR-146b-5p to induce TRAF6
expression leading to HCC metastasis [62]. Moreover, IncRNA TINCR is a sponge for miR-214-5p.
TINCR overexpression sponged miR-214-5p to upregulate ROCK1 in HCC metastasis [64]. Knockdown
of IncRNA SNHG15 and SNHGS8 suppressed HCC metastasis and proliferation via regulation of
the miR-490-3P/ HDAC?2 axis and miR-149-5p/ PPMIF axis, respectively. HDAC2 and PPM1F were
direct targets of miR-490-3P and miR-149-5p, and overexpression of SNHG15 and SNHGS8 in HCC
showed a correlation between HDAC2 and PPMIF expression via the absorption of miR-490-3P and
miR-149-5p, respectively [65,66]. The IncRNA FLVCR1-AS1 sponged miR-513c to modulate HCC
metastasis and proliferation via up-regulation of MET expression [67]. In addition, overexpression
of IncRNA ROR induced ZEB2 expression by sponging miR-145, and increased EMT and HCC
metastasis [68]. The IncRNA MIAT sponged miR-520d-3p, upregulating EPHA?2 expression leading to
HCC proliferation and metastasis [81]. In addition, knockdown of LINC00460 and LINC00488 induced
cell apoptosis and reduced angiogenesis via downregulation of PAKT and TLN1, respectively, which are
direct targets of miR-485-5p and miR-330-5p. LINC00460 and LINC00488 sponged miR-485-5p and
miR-330-5p leading to HCC tumorigenesis and angiogenesis, respectively [69,70].

To regulate the HCC signaling pathway, IncRNA DSCRS acts as a sponge for miR-485-5p and
regulates the Wnt/3-catenin signaling pathway resulting in upregulation of FZD?. Statistical analysis
of DSCR8 and miR-485-5p showed a close relationship between malignant clinicopathological features
and survival rate [71]. In addition, IncRNAs DBH-AS1 and TUG1 up-regulated the FAK/Src/ERK and
JAK2/STAT3 pathways by sponging miR-138 and miR-144 resulting in HCC tumorigenesis [72,73].
The IncRNAs SNHG12 and SNHG6-003 upregulated the NF-kB and p38 pathways via induction of
MLK3 and TAK1 expression by sponging miR-199a/b-5p and miR-26a/b, respectively [74,75]. Moreover,
IncRNA UCAL1 activated the FAFR1/ERK signaling pathway by regulating FGFR1 expression by
sponging miR-216b [76].

During autophagy, upregulation of IncRNAs NEAT1 and CCAT absorbed miR-204 and
miR-181a-5p to induce HCC autophagy via upregulation of ATG3 and ATG?7, respectively [77,78].
In addition, IncRNA PVT1 induced HCC autophagy via regulation of the miR-365/ATG3 axis.
Overexpression of PVT1 sponged miR-365 in HCC; consequently, ATG3 expression was increased by
HCC autophagy induction [79].

Moreover, IncRNA MIAT is associated with senescence in HCC. Knockdown of MIAT induced
cellular senescence and HCC growth. The target of miR-22-3P is Sirtuin 1 (SIRT1), and overexpression of
MIAT downregulated miR-22-3P via the sponge effect, and SIRT1 expression increased. Downregulation
of MIAT resulted in senescence-associated secretory phenotype and suppressed HCC tumorigenesis [80].
Overall, overexpressed IncRNAs are critically involved in HCC proliferation and metastasis via
regulation of the cell cycle, autophagy, apoptosis, and several signaling pathways. Thus, overexpressed
IncRNAs are recognized as HCC biomarkers and therapeutic targets.

2.2. Tumor Suppressor [ncRNAs Inhibit HCC Tumorigenesis by Sponging Onco-miRNAs

In HCC cell lines and tissues, IncRNA GAS5 expression decreased. Knockdown of GAS5 induced
doxorubicin resistance and promoted cell proliferation via upregulation of PTEN. Although miR-21 directly
downregulated PTEN expression in HCC, overexpression of GAS5 was sponged by miR-21. Consequently,
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PTEN expression increased and inhibited HCC [82]. In addition, IncRNA SNHG16 overexpression
inhibited HCC proliferation and 5-fluorouracil (5-FU) chemoresistance in in vivo/in vitro assays via
absorption of has-miR-93 in Hep3B and Huh?7 cell lines [83]. The IncRNA XIST was downregulated in
HCC. Upregulation of miR-497-5p inhibits the expression of PDCD4 (programmed cell death 4). In a
cell growth assay, overexpression of XIST inhibited the growth of HepG2 cell lines via upregulation
of PDCD4 and absorption of miR-497-5p [84]. Downregulation of IncRNA EPB41L4A-AS2 in HCC
is clearly associated with negative regulation of HCC proliferation and metastasis. Overexpression
of EPB41L4A-AS2 sponged miR-301a-5p and inhibited cell growth and migration/invasion via
upregulation of FOXL1 by miR-301a-5p downregulation. In an invivo study, EPB411.4A-AS2
suppressed lung metastasis via regulation of the miR-301a-5p/FOXLI axis [85]. The expression
of IncRNAs DGCR5 and MIR31HG was negatively correlated with HCC proliferation and metastasis.
Overexpression of DGCR5 and MIR31HG sponged miR-346 and miR-575, and suppressed HCC cell
growth and migration/invasion via upregulation of KLF14 and ST7L expression, respectively [86,87].
In addition, LINC00657 and TUSC? were positively correlated with PTEN and EPHA4 expression in
HCC. Overexpression of LINC00657 and TUSC7 suppressed HCC proliferation, migration, and invasion
by sponging of miR-106a-5p and miR-10a, and upregulation of PTEN and EPHA4 expression [88,89].
Collectively, the study of tumor suppressor IncRNAs in HCC helps to provide an understanding of
HCC proliferation and metastasis, and IncRNAs can be used as potential biomarkers for HCC diagnosis.

3. Circular RNA and microRNA Networks in HCC

An increasing number of studies have revealed that circRNAs play important roles in cancer
development, including HCC. CircRNA can be used as a ceRNA to decrease cytoplasmic levels of target
miRNAs by abolishing miRNAs. Thus, gene expression levels of target mRNAs can be maintained.
In this section, we describe how individual circRNAs may participate as ceRNAs in the regulatory
network of HCC.

3.1. Owverexpression of Circrnas Induces HCC Progression by Sponging Tumor-Suppressive miRNAs

To date, several studies have found that circRNAs exert oncogenic effects by sponging miRNAs in
HCC progression. In HCC tissues and cell lines, circ-PVT1 derived from the PVT1 gene locus is markedly
elevated and acts as a sponge of miR-3666 [90]. Knockdown of circ-PVT1 resulted in the reduction
of proliferation and induction of apoptosis by upregulating miR-3666 in HCC cells. A molecular
mechanism has been identified in which circ-PVT1 induces HCC proliferation by enhancing SIRT7,
a target gene of miR-3666. In addition, various miRNAs including miR-125, miR-145, and miR-497 have
been reported as sponge targets of circ-PVT1 in gastric cancer [91], colorectal cancer [92], and non-small
cell lung cancer [93], respectively.

A study by Xiao et al. demonstrated that circRNA plays a role in the estrogen receptor (ER)
a-mediated decrease of HCC cell invasion [94]. ER«x inhibited circ-SMG.172 expression by binding to
the 5" promoter region, and expression of the tumor suppressor miR-141-3p increased by disruption
of the sponging function of circ-SMG.172. miR-141-3p subsequently suppressed the expression of
Gelsolin by binding to the mRNA 3’UTR. In HBV-related HCC, circ-100338 also acts as a sponge for
miR-141-3p [95]. In silico analysis suggests that MTSS1 is a potential target of miR-141-3p that regulates
metastasis of HCC.

A bioinformatics analysis study found that upregulated circRNA and downregulated miRNA
in HCC provided information about miRNA sponging circRNA [96]. From the qRT-PCR validation,
has-circ-0009910 was found to be a sponge of miR-1261, which resulted in the enhancement of UBE2L3
expression and HCC progression.

In the early stages of HCC, various circRNAs have been identified as important regulators involved
in HCC progression. Circ-CDYL is upregulated in early stage HCC and induces expression of HDGF
and HIF1AN by sponging miR-892a and miR-328-3p, respectively [97]. Circ-CDYL-induced HDGF
activates PI3K-AKT signaling by binding to its receptor NCL, which results in enhanced expression of
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¢-MYC and survivin. Circ-CDYL-mediated HIFIAN also upregulates survivin expression via inhibition
of Notch2 signaling.

In HCC cells, circ-PRKCI functions as a miRNA-545 sponge and disrupts its inhibitory activity
against the E2F transcription factor 7 (E2F7) [98]. Higher expression of E2F7 is observed in HCC and
correlated with a lower survival rate. In HCC, enhanced expression of has-circ-0078710 is correlated
with the promotion of cell proliferation, migration, and invasion. It was found that has-circ-0078710
functions as a sponge of miR-31, which results in the induction of HDAC and CDK2 target genes [99].
In HCC tissues, the upregulated expression of circ-001569 and circ-0005075 is correlated with increased
HCC proliferation and metastasis. It was hsown that circ-001569 and circ-0005075 act as sponges of
miR-411-5p and miR-432-5p [100], and miR-431 [101], respectively. However, their target genes in
HCC have not been mentioned.

A study by Bai et al. reported that circ-FBLIM1 functions as a competing endogenous RNA
(ceRNA) to induce HCC progression [102]. The molecular mechanism is such that circ-FBLIM1 is the
sponge of miR-346, and FBLIM]1 is a direct target of miR-346. In HCC, overexpression of aquaporin
3 (AQP3) promotes cell proliferation and migration, and circ-HIPK3 expression is positively correlated
with AQP3 expression by sponging miR-124 [103]. Knockdown of circ-HIPK3 reduced tumor growth
via the miR-124-AQP3 axis in the Huh7 xenograft model. Therefore, these circRNAs functioning as
sponges for mi-RNAs could be used as a biomarker for diagnosis and as targets for HCC therapy.
The circRNAs, miRNAs, and their target genes are summarized in Table 2.

Table 2. Circular RNA and microRNA networks in HCC.

CircRNAs Target miRNA  Target Genes of miRNA Function Reference
Overexpression of IncRNAs in HCC
circ-PVTa miR-3666 SIRTUIN 7 HCC proliferation [90]
circ-SMG1.72 miR-141-3p GELSOLIN HCC invasion [94]
. . hepatitis B-related
circ-100338 miR-141-3p MTSS1 HCC progression [95]
has-circ-0009910 miR-1261 UBE2L3 HCC progression [96]
cire-CDYL miR-892a, HDGF, HIFIAN Early stage HCC [97]
miR-328-3p progression
circ-PRKCI miRNA-545 E2F7 HCC proliferation [98]
has-circ-0078710 miR-31 HDAC, CDK2 HCC progression [99]
. miR-411-5p HCC proliferation,
circ-001569 miR-432-5p unknown metastasis [100]
has-circ-0005075 miR-431 unknown HCC proliferation, [101]
metastasis
circ-FBLIM1 miR-346 FBLIM1 HCC progression [102]
circ-HIPK3 miR-124 AQP3 HCC proliferation, [103]
metastasis
Downregulation of IncRNAs in HCC
has-circ-0000204 miR-191 KLFé6 HCC proliferation [104]
circ-HIAT1 miR-3171 PTEN HCC proliferation [105]
circ-SETD3 . . .
(has-circ-0000567) miR-421 MAPK14 HCC proliferation [106]
circc:ADAMTS13 miR-484 unknown HCC proliferation [107]
circ-MTO1 miR-9 P21 HCC progression [108]
has-circ-0005986 miR-129-5p NOTCH1 HCC biomarker [109]

3.2. Tumor Suppressor Circrnas Inhibit HCC Tumorigenesis by Sponging Onco-miRNAs

Several circRNAs that function as tumor suppressors in HCC have been reported. A study
on HCC tumorigenesis found that circRNA is involved in the regulatory mechanism of oncogenic
miR-191 [104]. In HCC Hep3B and HepG2 cells, elevated miR-191 was sponged by has-circ-0000204,
and the expression of tumor suppressor KLF6 increased via binding reduction of miR-191 to the 3’UTR
region of KLF6 mRNA.
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A study by Wang et al. reported the roles of circRNA hippocampus abundant transcript
1 (circ-HIAT1) in HCC and its tumor suppressive mechanism [105]. In vitro and in vivo experiments
demonstrated that circ-HIAT1-mediated upregulation of PTEN expression via miR-3171 sponging
resulted in HCC cell proliferation.

In HCC tissues, circ-SETD3 is another tumor suppressive circRNA that acts as a sponge of
miRNA. Circ-SETD3 reduces the proliferation of Huh7 HCC cells by sponging miR-421 and enhancing
expression of its target gene, MAPK14 [106]. In addition, overexpression of circ-SETD3 reduced tumor
growth in a Huh?7 xenograft mouse model.

circ-ADAMTS13 has also been identified as a tumor suppressor circRNA, and acts as a sponge of
miR-484; however, its target gene is unknown [107]. Circ-MTO1 is another tumor suppressive circRNA
that acts as a sponge of miRNA in HCC. Circ-MTO1 inhibits HCC progression by sponging oncogenic
miR-9 to promote target gene p21 expression [108]. Has-circ-0005986 exerts tumor suppressive effects
by sponging miR-129-5p in HCC cell lines. Gene ontology analysis demonstrated that Notchl is
the direct target gene of miR-129-5p [109]. These studies suggest that circRNAs function as tumor
suppressors and by sponging oncogenic miRNA, might be good HCC biomarkers. Tumor suppressive
circRNAs and target miRNAs are listed in Table 2.

4. Clinical Application of IncRNAs and CircRNAs as Novel Biomarkers in HCC

As described above, IncRNAs/circRNAs, as ceRNAs, are heavily involved in HCC development via
diverse regulation of onco-miRNAs and/or tumor suppressive-miRNAs (Figure 3). Increasing evidence
indicates that ceRNAs not only serve as biomarkers for the diagnosis of various cancers, including
HCC, but are also involved in chemotherapy resistance. Through meta-analysis, several studies
have demonstrated the diagnostic value of IncRNAs as biomarkers in HCC [110]. Another group
has analyzed IncRNA and mRNA expression profiles obtained from The Cancer Genome Atlas and
identified four IncRNAs (RP11-486012.2, RP11-863K10.7, LINC01093, and RP11-273G15.2) that have a
diagnostic potential for HCC [111]. GAS5 is a novel non-Ig partner of BCL6. Suppression of GAS5 is
associated with clinicopathological characteristics in several liver dysfunctions [112-114]. Tumor node
stage (TNM), overall survival (OS), disease-free survival (DFS), and metastasis were correlated with
GAS?S expression, indicating that GAS5 can be a potential diagnostic and prognostic biomarker in
HCC [115]. HULC (highly upregulated in liver cancer) is known to reduce the expression of protein
kinase cAMP-activated catalytic subunit beta (PRKACB) and to increase the HMGA?2 oncogene via
interaction with miR-372 and miR-186 in HCC [116,117]. In clinical analysis, HULC was detected more
frequently in HCC patients with HBV, which was correlated with tumor size and tumor capsular
invasion [118]. The plasma expression level of MALAT1 in HCC patients was associated with
liver damage and showed clinical potential for predicting HCC development [119]. In addition,
the serum level of UCA1 was higher in HCC patients [120]. Receiver operating characteristic
(ROC) curve analysis revealed that serum UCAT1 levels could distinguish HCC patients from healthy
controls (AUC = 0.902) with high sensitivity and specificity. However, in order to apply this
criterion clinically, additional evaluations are required. GALAD (which includes gender, age, AFP-L3,
alpha-fetoprotein, and des-carboxy-prothrombin) and BALAD (which includes bilirubin, albumin,
AFP-L3, alpha-fetoprotein, and des-carboxy-prothrombin) score calculations may be particularly
useful [121,122].

As circRNAs are abundant, stable, and highly conserved, they have great potential as
cancer diagnostic biomarkers in HCC. Previously, Shang et al. discovered 26 upregulated and
35 downregulated circRNAs in HCC tissues compared to adjacent non-tumorous tissues [123].
Among these 61 differentially expressed circRNAs, only hsa_circ_0005075 displayed differences
in HCC, which correlated with tumor size and poor prognosis and exhibited good diagnostic potential
(AUROC = 0.94) [123,124]. In addition, differentially expressed hsa_circ_0004018 and hsa_circ_0128298
were identified in HCC by circRNA microarray [125,126]. After further validation via qRT-PCR,
these two circRNAs showed strong potential as novel diagnostic and prognostic biomarkers in HCC
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patients. More recently, 13,124 circRNAs were identified in HBV-associated liver cancer patients
using bioinformatics tools after high-throughput RNA sequencing [127]. Prediction analysis for
circRNA-miRNA interactions revealed that 6020 circRNAs had putative binding sites for 1654 miRNAs.
One of the identified circRNAs was circRNA_10156, which is up-regulated in liver cancer and leads
to enhanced Aktl expression via miR-149-3p sponging. Therefore, circRNA_10156 may be a useful
biomarker for HBV-related liver cancer diagnosis.

Inc and circ RNAs Target miRNAs Target genes
p y
Up-regulated
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; miR- miR- miR- AGO2  MET  SIRTUIN7 P
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Figure 3. Schematic representation of Inc/circRNAs serving as ceRNAs in HCC. The upregulated long
non-coding RNAs (IncRNAs) and circular RNAs (circRNAs) sponge target microRNAs (miRNAs),
which results in increased expression of target genes. The downregulated IncRNAs and circRNAs
sponge target miRNAs, which results in decreased expression of target genes.

Owing to their high stability and abundance, circRNAs in several body fluids such as blood, urine,
and saliva, are considered suitable biomarkers for liquid biopsies [128]. Although alpha-fetoprotein
(AFP) is the most widely used serum/plasma biomarker for HCC diagnosis, it has limitations for poor
sensitivity and specificity [129]. First, Li et al. characterized circRNAs using RNA-seq analyses of
MHCC-LMS3 liver cancer cells and cell-derived exosomes [130]. In total, 6751 circRNAs were found
in cell-derived exosomes. This number is at least two-fold higher in exosomes compared to that in
the donor cells. Moreover, exosomal circRNA_100284 was found in the serum of arsenite-exposed
patients [131]. Further functional analysis revealed that exosomal circRNA_100284, derived from
malignant-transformed L-02 cells after arsenite exposure enhanced cell cycle and proliferation of
normal liver cells and induced malignant transformation of non-transformed cells by acting as a
sponge for miRNA-217. In addition, Wang et al. identified exosomal circPTGR1 in a metastatic liver
cancer cell line, LM3, which promotes hepatocellular carcinoma metastasis via the miR449a-MET
pathway [132]. Notably, some studies demonstrated that adipose-derived exosomal circRNA, circ-DB,
promotes HCC cell growth and reduces DNA damage by suppressing miR-34a and activating the
USP7/Cyclin A2 signaling pathway [133]. Thus, capitalizing on the high stability and tissue-specificity
of exosomal circRNAs, might provide promising cancer biomarkers for early diagnosis and prognosis
in HCC patients.

Accumulating evidence has revealed the involvement of ncRNAs in HCC chemo-drug resistance.
Sorafenib targeting multiple receptor tyrosine kinases (RTKs) is currently an effective first-line therapy
for HCC. However, sorafenib resistance is frequently observed during HCC treatment [134]. The IncRNA
TUC338 has been known to be involved in the development of HCC and sorafenib resistance [135].
Enhanced TUC338 expression was observed in both HCC tissues and cell lines. Sorafenib silenced
TUC338 in sensitized HepG2 HCC cells, which was accompanied by increased expression of RASALI.
Inversely, intratumoral delivery of siTUC338 could also restore the sorafenib treatment response in
HepG2/Sor xenografts in vivo. Moreover, extracellular vesicle-enriched linc-VLDLR is also involved in
sorafenib resistance of HCC cells [136]. Depletion of linc-VLDLR led to a reduction of the drug-resistant
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protein ABCG2 (ATP-binding cassette, subfamily G member 2), which resulted in the suppression of
HCC cell proliferation and cell cycle arrest in G1/S. However, elevation of ABCG2 protein inhibited
sorafenib-induced cell death by VLDLR knockdown. Recently, aberrant expression of circRNAs has
also been identified in sorafenib-resistant HCC cells [137]. Based on high-throughput RNA-sequencing
and analysis with CIRI (V2.0) software [138,139], 1,717 and 582 differentially expressed circRNAs were
identified in sorafenib-resistant Huh7-S and HepG2-S HCC cells compared to parental HCC cells,
respectively. In further gene ontology and pathway analyses, downregulated hsa_circ_0006294 and
hsa_circ_0035944 expression was observed in sorafenib-resistant HCC cells.

5. Conclusions

In this review, we describe IncRNAs/circRNAs as sponges for regulating miRNAs and their target
genes in HCC. We highlight examples of ncRNAs participating in regulatory networks and how they
contribute to cancer malignancy. However, the understanding of ceRNA network regulation in the
ncRNA field in HCC remains limited, because many HCC-related miRNAs and ncRNAs have not
been identified. Therefore, further studies are necessary to elucidate the functions and mechanisms
of HCC-related ceRNAs. Furthermore, the IncRNA, circRNA, miRNA, and miRNA target mRNAs
involved in the ceRNA network can be potential therapeutic targets and diagnostic markers for HCC.
Results from studies on ncRNAs in cancer are very promising. However, classic biomarkers and
derived scores continue to be used as a golden standard in the early detection of HCC. Therefore,
large prospective studies for the validation of diagnosis using ncRNA biomarkers should be conducted.
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