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Abstract: Multiple linear regression analysis was performedtite quantitative structure-
activity relationships (QSAR) of the triazoloquilméine adenosine antagonists for human A
receptors. The data set used for the QSAR anabmt®mpassed the activities of 33
triazoloquinazoline derivatives and 72 physicocleaindescriptors. A template molecule
was derived using the known molecular structureofte of the compounds when bound to
the human Ag receptor, in which the amide bond was igisconformation. All the test
compounds were aligned to the template moleculerder to identify a reasonable QSAR
equation to describe the data set, we developedlapta linear regression program that
examined every possible combination of descriptoh® QSAR equation derived from this
analysis indicates that the spatial and electreffiects is greater than that of hydrophobic
effects in binding of the antagonists to the hurarreceptor. It also predicts that a large
sterimol length parameter is advantageous to &gtiwhereas large sterimol width
parameters and fractional positive partial sur@eas are nonadvatageous.
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1. Introduction

Adenosine receptors belong to the rhodopsin faofilg-protein-coupled receptors (GPCRS). These
are transmembrane (TM) receptors with seven-helihas play key roles in signal transduction,
including the phosphorylation cascade [1]. The adare receptors include the subtypas Aga, Az
and A [2] of which the adenosine sAreceptor performs cardio- or neuro-protectivevatidis during
cardiac or cerebral ischemia, respectively [3]. Mhgeceptor is activated by adenosine or agonists by
activating inhibitory G proteins, it inhibits thegeration of CAMP by adenylate cyclase [4]. However
activation of the human #eceptor results in hypotension and release adnimihatory mediators from
mast cells [5-6]. At present, human Peceptor antagonists are being investigated asaitenti-
inflammatory, anti-asthmatic and anti-ischemic dg¢n|.

In order to develop new therapeutics and to defieeAs receptor mechanism, investigations have
focused on the search for potent and selectiyge@eptor antagonists, including flavonoids [8-9],
pyridine derivatives [10], 1,4-dihydropyridines [12] and triazoloquinazolines [13-14]. Derivatives
of the latter group are considered to be amongststitongest antagonists of the humanréceptor
[15]. Moro et. al. [16] used their seven-helix model of the humaréceptor to identify certain key
amino acid residues that could participate in tmeling of antagonists [16]. However, this research
only considered one triazoloquinazoline derivatwel did not provide a comprehensive, quantitative
analysis of antagonist activity.

Quantitative structure-activity relationship (QSARNdies represent a powerful tool for relating the
biological activities of compounds to their physibemical properties, which are referred to as
descriptors [17]As a data set for QSAR analysis of feceptor antagonists, we chose a series of 33
triazoloquinazoline derivatives that had been regabby Jacobsoet al. [14]. QSAR analysis was
performed on the binding affinities of these agtmisising descriptors which represent 72
physicochemical parameters. In order to derivebibst QSAR equation, we generated a full search
multiple linear regression method (FS-MLR). Thisheique examines all potential combinations of
the 72 descriptors, in order to identify the dgstor combination which correlates most closely with
the biological data.

2. Methods
2.1. Data St

The 3D-sketcher module of the Cerius2 program {@er8.5, Molecular Simulations Inc., San
Diego, CA) was used to generate molecular modeB&3dfiazoloquinazoline derivatives. Since there
was no quantitative binding affinity data for thengpound containing the (o-iodophenyl)acetyl (-
COCH,-(2-1-Ph)) group as substituent, we excluded itnfrahe analysis. The-aminobutyryl-
substituted derivative 26 was selected as a tempiatiecule because its molecular model could be
derived from the literature [14]. Upon binding tbet human Ag receptor, the amide bond of
compound 26 is in ais-conformation [14]. As Areceptors are thought to form a similar sevenxheli
structure to that of 4 receptors, we used a similas-conformation for the amide bond for our model
of compound 26 binding to the humag receptor. In compound 26, the long chain of tHesstuent
lies in the plane of the molecule.
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Figure 1. Front (a) and side (b) view of the aligned molesua the membrane plane. The furan ring
has been reported to point in an extracellularctiva [16].

Molecular conformations of the other compounds wigted manually to the template molecule.
They were then energy-minimized using the Merck édalar Force Field (MMFF) [18-19] and the
models re-aligned to the template molecule usirg rilgid fit alignment module in the Cerius2
program (Fig. 1). The charge equilibration metha$wsed to assign atomic partial charges to each of
the compounds [20]. Activity values for the QSARuation were obtained using the negative
logarithm of binding affinity (K, which had been determined by radio-ligand bigdiesays [14].

The physicochemical properties of each compounde vepecified using 72 descriptors, which
delineate conformational, electronic, spatial, ctial, thermodynamic and quantum mechanical
information. The QSAR+ module of Cerius2 was usewiéntify all the descriptors.

2.2. Full Search Multiple Linear Regression Method

A relationship between independent and dependemnables (physicochemical descriptors and
biological activities, respectively) can be detered statistically using regression analysis. Linear
regression is achieved by fitting a best-fit stindigne to the data using the least squares method.
Descriptors that are included in a reasonable Q8éation should exhibit low collinearity and thus,
behave as independent variables [21]. We calcul#ted collinearity between descriptors using
equation (1) and the quality of fit for a regressiequation was assessed relative to its correlation
coefficient and standard deviation, using equati@s and (3), respectively. The fithess of the
regression equation improves, the closer the @iroel coefficient approaches to one. The F value
represents the level of statistical significancehef regression (equation 4). The predictive qualita
regression model can be evaluated using the leageaot cross-validation proceduréy).

linearity: p, 5 = C2YAB) 1
Collinearity: pas v 1)

whereoa andog are the standard deviations of A and B, respdgtemed covA,B) is the covariance
of A and B.
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D (Y = Yeuo)? 2)
D=2

WhereZ(Yj -Y.4.)? is the sum of the squares about the regressionZé}(\q -Y)2is the sum of the

Correlation coefficientr? =1-

squares about the mean.

1-r?).S 3
Standard deviations :M, )
n-k-1
wheres,, = (v, -Y)* andn is the number of observatiorisjs the number of variables, ands
the correlation coefficient.

F-value: F =r2(n—_k2_1) (4)
ke (L-r2)

For a regression modef was used to describe the fitness of data andsftti® considered to
improve as 7 approaches 1. The sum of the squared deviationdepéndent variables (SD) is
described by (¥bs - Ymea)” and the predicted sum of squares (PRESS), byd(YYoby®. The cross-
validated correlation coefficient( is defined as (1 — PRESS/SB)and it used to evaluate the
predictive power of the QSAR equations that weneegated. Each molecule was eliminated from the
training set and cross-validatedwas calculated using the predicted values fontlesing molecule.

The FS-MLR was performed using the least squardahade the statistical definitions described
above and a full search method. Given that theskdirch method performs an exhaustive examination
all possible descriptor combinations, there igelittoncern that important descriptors might be edss
and this method enables identification of the QS#Ration with the best correlations.

The program determines collinearity between degmspand those combinations containing high
inter-descriptor collinearity are discarded. Mukiplinear regressions are performed using the
descriptor combinations remaining and upon calmnatof the correlation coefficients, QSAR
equations that have correlation coefficients whecjual or exceed a preset value are reported. We
specified 0.7 and 0.9 as the collinearity and dati@n coefficient cutoff values, respectively.

2.3. Sdection of Outliers

Data points that cannot be described using the Q&d\Rition are referred to as outliers. In order to
investigate these systematically we eliminated eaompound individually from the data set,
generating 33 reduced data sets. Then we usedSHdLIR to determine which QSAR equations
derived the best correlation coefficients from thelier-free data sets. The best QSAR equation was
determined using statistical analyses of correfatizefficient, standard deviation and F-value. Cate
outlier was identified, the elimination process wageated, in order to achieve the best QSAR
equations containing between one and five terms.
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3. Results and Discussion
3.1. Derivation of QSAR

In order to derive a reasonable QSAR equation, eopned FS-MLR and evaluated QSAR
equations that used between one and six terms. Mfiffe data sets (n > 30), the linear regression
equation should contain at least 6 data pointvaeable in order to avoid chance correlations [21]
Table 1, the statistical values of the best QSA&Ra&qgns are presented in the column headed ‘néine’.
the statistical values were unsatisfactory (forneple, r> = 0.61 for a 5 term equation), the QSAR
equation was not considered to be reasonable.

Table 1. Improvement of the best QSAR equation in relatmthe number of terms and outliers

removed.
Outliers None 15 515 51415
2a c 2a c 2a c 2a [
No of Terms r SO A I - A - A I e A - s SO A
1 0.23 0.82 9.49 0.25 0.82 10.15 0.26 0.83 10.25 0.26 0.84 9.95
2 0.37 0.75 6.59 0.40 0.75 7.02 0.41 0.75 7.14 0.42 0.76 7.07
3 0.49 0.69 6.69 0.50 0.69 5.76 0.52 0.69 5.82 0.53 0.70 6.09
4 0.54 0.66 3.24 0.60 0.63 6.61 0.62 0.62 7.56 0.64 0.62 7.68
5 0.61 0.63 4.29 0.75 0.51 16.09 0.82 0.44 27.16 0.86 0.40 36.01
6 0.69 0.57 6.60 0.78 0.49 3.15 0.84 0.42 3.31 0.87 0.38 3.67

®The correlation coefficientsJt "standard deviations (s) afmhrtial F values (Fp) of QSAR equations.

Table 2. Elimination of the outlier from the best QSAR etjoa and the corresponding statistical
values in relation to the number of terms.

No-oF 1 6 tlier P2 g Fe
terms
1 14 0.33 0.77 14.50
2 14 0.42 0.73 10.63
3 14 0.54 0.66 11.08
4 14 0.63 0.60 11.54
5 15 0.75 0.49 15.80

%correlation coefficient @), °standard deviation (s¥-value (F)

Removal of outliers improved the correlation caméint of the QSAR equations. Thus, outliers
were inspected systematically and are summariz8dile 2, as are the statistical values of the best
QSAR equations and the specific number of termthodigh compound 14 was found to be an outlier
in equations using between one and four termgsstal values indicated that equations with |dssnt
four terms were unreliabler’( < 0.64). Following elimination of compound 15, thewas great
improvement in the statistical valug € 0.75) of the best QSAR equation that used farens. The
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statistical values of QSAR equations with one Ye tierms are shown in Table 1, in the column headed
‘15'. In fact, the residual of compound 15 was &.@hich was more than six times greater than the
standard deviation (0.44). Therefore, the compowad considered to be an outlier. In order to
improve the regression equation further, compouma$ also removed, as its residual was about four
times greater than the standard deviation. In Tdblehe statistical values of QSAR equations,
following elimination of both compounds 5 and 1 ahown in the column headed ‘5, 15'. Increasing
the number of terms from four to five, improved tt@relation coefficient, standard deviation and
partial F-value by 33, 29, and 259 %, respectivelgwever, even with removal of compound 14, a
six-term equation afforded little significant impement on the statistical values. Thus, it was
concluded that removal of two outliers (compoundsl5) and adoption of a five term equation
represented the most reasonable steps for dernvatia statistically reliable QSAR equation. Theefi
QSAR equation was as follows:

Log K; = 0.387L — 3.697B— 0.331B — 92.456FPSA— 10.423 + 26.354 5)
n=231,r>=0.820,°, = 0.716s= 0.440F = 22.805

in which n represents the number of data points used for aeviv of the equationt is the
correlation coefficientsis the standard deviation from the regression,raisdthe F value.

1

Predicted pKi

Observed pKi

Figure 2. Predictedversus observed human #feceptor binding affinities. Predicted values were
determined using equation (5).

The QSAR equation (5) demonstrates significantetation and is able to explain 82 ¥)(of
observed variations in activities. The cross-vaéda® (0.716) indicates that this QSAR equation is
able to predict activities successfully. Descriptalues, observed activities, and predicted acwiare
presented in Table 3. Predicted actiwysus observed activity was plotted (Fig. 2) and theeation
matrix (Table 4) demonstrates low collinearity € 0.5) between descriptors. Although, there mag be
slight correlation 1¢ < 0.33) between descriptors and observed actithigy,combination of the five
descriptors provides a good fit (Table 4).
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Table 3. Binding affinities and descriptor values from QSA&uation (5).
H R

N s

X

N

~N O
-~ /7 N\
\

491

Cl

No Substituents(R) Obsd Pred Resd L 1 B B3 FPSA p

la | H -1.14 -1.10 -0.04 1.70 1.20 1.20 0.11 1.29
1b | COCH-Ph 0.19 -0.50 0.69 8.51 2.13 4,50 0.09 1.22
3 | CHz2-Ph -1.63 -1.28 -0.35 4.61 1.70 5.98 0.09 1.24
4 | COCH-(4-CHsO-Ph) -1.16 -0.86 -0.29 8.86 1.90 6.61 0.09 1.22
5 | COCH>-(4-NHz-3-1-Ph) -1.69 -3.37 1.67 8.44 1.91 6.34 0.09 1.49
6 | COCH>-(4-NH2-Ph) -0.55 -0.65 0.10 9.38 1.94 4.66 0.10 1.22
7 | COCH-(3-I-Ph) -2.95 -3.15 0.20 8.50 2.05 5.94 0.08 1.49
8 | COCH-(4-I-Ph) -1.80 -151 -0.29 9.93 1.91 4.83 0.08 01.5
9 | COCH-(3-CI-Ph) -1.51 -150 -0.01 8.50 2.10 5.54 0.09 271.
10 | (R)-COCH(CH)(Ph) 0.44 -0.25 0.69 7.55 1.81 5.27 0.09 1.21
11 | (S)-COCH(CH)(Ph) 0.33 -0.11 0.44 7.55 1.81 5.27 0.09 1.20
12 | COCH(Ph} 0.23 0.14 0.09 8.31 2.02 5.18 0.08 1.19
13 | COC(CH)(Ph} -229 -1.60 -0.69 8.20 2.32 6.41 0.09 1.18
14 | COCHCH2-Ph -1.37 -0.47 -0.91 6.81 1.82 5.59 0.09 1.21
15 | COCH=CH-Phftans) -1.86 1.12 -2.98 8.17 1.72 3.68 0.09 1.22
16 | D-COCH(CH)(NH-Bod®) -1.67 -2.01 0.35 9.65 2.19 6.07 0.10 1.20
17 | L-COCH(CHs)(NH-Bod®) -1.92 -1.82 -0.10 9.65 2.19 6.07 0.10 1.20
18 | CO(CH)2-NH-Bod® -0.83 -1.13 0.30 10.15 1.91 6.37 0.11 1.20
19 | CO(CH)3-NH-Boc® -1.52 -1.61 0.09 10.00 1.87 8.44 0.11 1.18
20 | CO(CH)+-NH-Bo& -1.34 -1.78 0.44 10.51 1.88 9.38 0.11 1.17
21 | CO(CH)s-NH-Boc® -1.53 -0.66 -0.87 13.23 1.89 8.77 0.11 1.16
22 | CO(CH)s-NH-Boc -1.73  -1.81 0.08 12.34 1.88 11.00 0.11 1.14
23 | D-COCH(CH)(NH2) -3.06 -3.11 0.05 4.94 2.05 3.88 0.10 1.24
24 | L-COCH(CHs)(NH2) -3.08 -2.93 -0.15 4.94 2.05 3.88 0.10 1.25
25 | CO(CH)2-NHz2 -294 -259 -0.35 5.55 1.89 3.49 0.11 1.24
26 | CO(CH)s-NH2 191  -2.44 0.54 7.10 1.90 3.84 0.11 1.22
27 | CO(CH)a-NHz2 -1.76  -1.85 0.08 8.28 1.89 458 0.11 1.20
28 | CO(CH)s-NHz2 -2.33 -1.88 -0.45 8.94 1.89 5.69 0.11 1.18
29 | CO(CH)e-NHz2 -254 -237 -0.17 8.08 1.89 6.28 0.12 1.17
30 | CO(CH)4-COOCHPH -1.65 -2.02 0.37 7.93 1.89 9.80 0.10 1.19
31 | CO(CH)2-COOCHs -1.74 -1.66 -0.08 7.45 2.07 4.21 0.10 1.25
32 | CO(CH)s-COOCHs -1.77  -1.92 0.15 7.95 1.73 9.46 0.10 1.20
33 | CO(CH)s-COOH -1.91 -1.98 0.07 6.62 1.88 3.86 0.10 1.25

#-Boc is tert-Butoxycarbonyl.
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Table 4. Inter-correlation of binding affinity and desciops from QSAR equation (5).

L B: Bs; FPSA p pK;
L 1.00
B: 0.41 1.00
Bs 0.70 0.12 1.00
FPSA 0.11 -0.25 0.12 1.00
p -0.21 -0.02 -0.38 -0.53 1.00
pK; 0.17 -0.19 0.02 -0.33 -0.23 1.00

3.2. QSAR Analysis

Although the QSAR equation (5) predicted that thdier compound 15 would exhibit very high
activity (1.12), its observed activity (-1.86) diwdt match (Table 3). This compound has a conjugated
double bond between the carbonyl and phenyl gramgsthe reason for its poor fit remains unclear.
However, it is possible that the rigidity of congdgd double bond causes steric hindrance in the
binding site of the humanzAeceptor.

The outlier compound 5, which has a di-substittetNH,-3-1-Ph) phenyl group, was predicted to
exhibit a lower activity (-3.37) than was obsern¢ell67). In contrast, compounds 6 (4-NPh) and 7
(3-1-Ph) fit well and the former was 3150 times mactive than the latter and it is possible that th
adverse effect that the 3-1 substituent exertsabivity is ameliorated by the 4-Ntsubstituent through
interactions with residues in the humagra@ceptor. However, the QSAR equation (5) faileéxplain
this interaction effectively.

The sterimol parameter L is defined as the lenfjtihsubstituent along the axis of the bond between
the first atom of the substituent and the parenemue [22-23]. Therefore, a positive L in the QSAR
equation (5) suggests that there are long substgue a specific direction. The fractional charged
partial surface area (FP@As obtained by dividing atomic charge weightedipwe surface area by
the total molecular solvent-accessible surface @4jand negative FPSAvalues are favored on the
bond axis. Morcet. al. made the assumption that when compound 1 was ouheé human A
receptor, it would be surrounded by transmembr@ (nits 3, 5, 6, 7 and that its furan ring would
point in an extracellular direction [16]. Owinggonilarities in receptor composition, they suggeste
that in the human £ receptor, the substituent in compound 26 wouldt®enidway between TM6
and TM7 and would extend in an extracellular dimtfrom the plane of the membrane [14].
Accordingly, the bond axis would be expected teerdtto midway between TM6 and TM7 with an
upward tilt (~45°) from the plane of the membrareyiding sufficient space for molecules with long
substituents to enter the binding site. The stdrimdth parameters (Band B) are orthogonal to the
bond axis and negative coefficients in the parametelicate steric hindrance in parallel to the
membrane (Fig. 1). There is limited space in thestMcture of the humansAeceptor in the direction
parallel to the membrane and negatiyeaBd B coefficients reflect the steric hindrance in this
direction. FPSAindicates that densely positive surface areagibom¢ negatively to binding of
compounds by the humarg feceptor. Thus, we suggest that with respecgtmtl binding, the
positively charged residues of the receptor coutellmore than the negatively charged residues. This
hypothesis is supported by the findings of Metiaal. [16] which indicate that no negatively charged
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residues are present in the TM core near the pathtnding site and that His272 (part of TM7) is
located within 5A of bound compound 1. Densjty, (vhich is defined as the ratio of molecular weigh
to molecular volume inside the contact surface,lmnsed to reflect how tightly a molecule fitint
the binding site and a negative coefficient of dgnadicates that packed molecules are of low
activity.

Table5. QSAR equations for subgroups.

Group Molecule QSAR equation 2y
1 1b, 4 and 6-10 7.28 - 649 0.70
2 1b and 11-14 7.45 -1.44B 0.70
3 16-22 5.92 - 2.97B0.19B; 0.79
4 23-29 -4.23 + 0.25L 0.61
5 30-33 0.44 - 22.36FP3A 0.80

In order to perform further analyses on the QSARa¢ign (5), the data set was divided into five
subgroups and a linear regression was performeghom subgroup using one or two of the descriptors
from the QSAR equation (5). The subgroup membersesponding regression equations and
correlation coefficients are presented in Tabl&éHe first subgroup comprised compounds containing a
substituent on the phenyl ring of compound 1b. €lmsnpounds exhibit a wide range of molecular
weights (403 - 529) and therefore, density had &keabeffect on their activities. For example,
compounds 5, 7, and 8 were found to exhibit wealkides because of their relatively heavy iodine
substituents. The second subgroup comprised meteeguth substituents on tikecarbon of the acetyl
group and bulkier substituents were found to ineeed values, thereby having a negative influence on
activity. For example, the highess Balue (6.41) in this subgroup was exhibited by poond 13,
which is 330-fold less potent than compound 12. fhlvel subgroup included compounds that
contained bulkyert-butoxycarbonyl substituents and therefore, thexelahigh sterimol width
parameter (B); the critical effect that Band B exert on the activities of this subgroup may kEnse
Table 5. The fourth subgroup comprised compoundsagang amine chains of various lengths and
the sterimol length parameter L was found to hasmgaificant effect on this group's activities. The
final subgroup contained esters and carboxylicsaartt the trend in activity could be explainedtiia
electronic properties represented by FR3Aall the regression equations presented inel'apthe
signs of the descriptors were consistent with tlid<@SAR equation (5) and its correlation
coefficients to the subgroups were high, indicathmag the descriptors in QSAR equation (5) werd wel
selected.
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4. Conclusions

Figure 3. Model for the binding of triazoloquinazoline deriivas to the human Areceptor. This
model was generated using QSAR equation (5) amdnrtion from the docking study by Moeb al.
[16]. The direction of substitution is represenbgdhe wavy bond, the arrow indicates the bond axis
and direction. The bond axis is tilted by about #6fm the plane of the membrane. The sterimol
length parameter L is defined as the length oftstswent along the bond axis. Substituents coimgin
high L values were favored, whereas high sterinmdtiwparameters orthogonal to L; 8nd B were
found to be unfavorable for binding of compound#i®human Areceptor.

Using the FS-MLR method, we have successfully éefrithe most statistically reasonable QSAR
equation for the triazoloquinazoline derivativeeeTphysicochemical descriptors used for the QSAR
reveal that the electronic (FP§And spatial characteristics (Ls,B3 andp) of substituents provide
contributions that are critical to ligand-recepbarding. Although the hydrophobic properties of the
substituents in triazoloquinazoline derivatives Imilge expected to play a crucial role in the bigdin
affinity of these compounds to the generally hythapc core of the TM helix [1], our QSAR analysis
suggests that they exert a negligible effect canegbinding to the humangAeceptor. Hydrophobic
effects are only important for the chlorophenyl etpiof these compounds. We propose a model for
the binding of triazoloquinazoline derivatives be thuman Areceptor that is based on our QSAR
analysis and the docking study performed by Morale{16] (Fig. 3). The QSAR equation is
consistent with the findings of the docking stuti§][and provides a quantitative explanation of the
trends in binding affinity in relation to the phgsthemical properties of the compounds. Althougs th
QSAR equation is useful, the caveat remains thaag derived from a limited number of amide-
containing compounds. Thus, it is only applicablsimilar compounds. Future research will focus on
modeling the human #&eceptor, including its loop sections, in ordeaiw in the design of potent
compounds that bind selectively to ther&ceptor.
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