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Abstract

Normalization of mRNA levels using endogenous reference genes (ERGs) is critical for an accurate comparison of gene
expression between different samples. Despite the popularity of traditional ERGs (tERGs) such as GAPDH and ACTB, their
expression variability in different tissues or disease status has been reported. Here, we first selected candidate
housekeeping genes (HKGs) using human gene expression data from different platforms including EST, SAGE, and
microarray, and 13 novel ERGs (nERGs) (ARL8B, CTBP1, CUL1, DIMT1L, FBXW2, GPBP1, LUC7L2, OAZ1, PAPOLA, SPG21, TRIM27,
UBQLN1, ZNF207) were further identified from these HKGs. The mean coefficient variation (CV) values of nERGs were
significantly lower than those of tERGs and the expression level of most nERGs was relatively lower than high expressing
tERGs in all dataset. The higher expression stability and lower expression levels of most nERGs were validated in 108 human
samples including formalin-fixed paraffin-embedded (FFPE) tissues, frozen tissues and cell lines, through quantitative real-
time RT-PCR (qRT-PCR). Furthermore, the optimal number of nERGs required for accurate normalization was as few as two,
while four genes were required when using tERGs in FFPE tissues. Most nERGs identified in this study should be better
reference genes than tERGs, based on their higher expression stability and fewer numbers needed for normalization when
multiple ERGs are required.
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Introduction

Gene expression analysis is becoming more important in

diagnostic fields as it allows for the identification of novel

biomarkers relevant to diseases. Endogenous reference genes

(ERGs) are widely used to normalize the mRNA level in the

relative quantification to provide an accurate comparison of gene

expression between different samples [1]. Traditional ERGs

(tERGs), such as GAPDH and ACTB, have been used in expression

studies without proper validation because of the assumption that

they are expressed at constant levels across different samples and

regardless of experimental treatments [2,3]. However, several

reports have shown that the expression of tERGs can vary in

different tissues and be regulated by experimental treatments or

pathological state [2,4–10]. As the use of inappropriate ERGs in

relative quantification of gene expression can result in biased

expression profiles [4,11,12], the selection of proper ERGs is

essential for accurate measurement especially in quantitative

methods including qRT-PCR, which is a highly sensitive and

accurate method [13].

Although there have been a number of previous studies aimed

at finding suitable ERGs, most of them have focused on selecting the

most stable genes from commonly used ERGs [14–17]. Moreover,

the identification of novel ERGs (nERGs) has been based primarily

on microarray data [10,18–21]. Although short-oligo microarrays

such as Affymetrix GeneChips, have the advantage of being highly

sensitive in detecting low abundance transcripts (nearly 3–20

transcripts per million (tpm)) [22], they have some disadvantages

such as inaccurate cross hybridization between probes and

transcripts, differences in hybridization efficiencies between probe

sets, limited linear range of signal, and incorrect annotation of

transcripts [23,24]. Therefore, an approach using only microarray

data may not be sufficient to identify the most suitable ERGs.

Although an ideal universal ERG may not exist [1,15], a

combination of large expression data from different platforms is

expected to complement the limitation of each platform [25] and

allow for the identification of more suitable ERGs.

Here, we describe an algorithm for the identification of nERGs

using the publicly available human gene expression datasets in

addition to in-house microarray data. The expression of selected
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nERGs in datasets was validated by qRT-PCR in 108 human

samples and their expression stability was compared to that of tERGs.

Materials and Methods

Ethics Statement
This study was approved by the institutional review board of

Samsung Medical Center. Patients’ written informed consent was

not required to be obtained as the institutional review board

approved the use of human tissues in this study without patients’

consent with the reason that the data were analyzed anonymously

and patients could not be identified.

EST, SAGE, microarray gene expression dataset
construction

EST and SAGE human gene expression data were collected

from the publicly available Cancer Genome Anatomy Project

(CGAP) site (http://cgap.nci.nih.gov/). Microarray data was

obtained from the Cancer Genome Expression Database of LG

Life Sciences, which is based on the Affymetrix HG-U133 (for the

samples included in microarray data, see Table S1)[26]. A detailed

description of each dataset construction is provided in the

Supplementary Materials and Methods (Text S1) and shown

schematically in Figure 1.

Algorithm for the identification of candidate HKGs and
13 nERGs

The methodology used to identify nERGs is outlined in Figure 1.

First, to identify nERGs, we searched for candidate HKGs whose

expression is detected in most tissues using 0’s proportion in EST

and SAGE datasets. 0’s proportion is defined as the proportion of

different tissues in which a given gene is not expressed and was

calculated as follows:

Figure 1. Flowchart of the methodology for identification of nERGs. 2,087 candidate HKGs were first identified by selecting the genes
meeting the following criteria: 0’s prop ,0.4 in EST, ,0.1 in shortSAGE and ,0.3 in longSAGE. 0’s prop represents 0’s proportion (number of tissues
in which the gene is not expressed/total number of tissues, 0#0’s prop#1). Among the candidate 2,087 HKGs, 13 nERGs with the lowest CVs were
further identified by selecting the genes common to all four datasets among the genes with the 400 lowest CVs (approximately 20% of candidate
HKGs).
doi:10.1371/journal.pone.0006162.g001
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00s proportion ~
No: of tissues not expressing the gene

Total No: of tissues

In this equation a value of 0 indicates that the gene is

expressed in all tissues, and a value of 1 indicates that the gene is

not expressed in any tissue. If a gene was expressed in any one

library of multiple libraries corresponding to the same tissue, that

gene was considered to be expressed in that tissue. A total of

2,087 candidate HKGs with low 0’s proportions in all three

datasets were selected (Table S2). Cut-off values for 0’s

proportion in each dataset were determined to include the

majority of the 575 HKGs identified from a previous Affymetrix

U95A chip [27] (see Figure 1, Text S1). Affymetrix (Affy) data

for 5,317 probe sets corresponding to 2,087 HKGs were

obtained. Mean gene expression and CV (%) for each gene

were calculated in each dataset. The Student’s t-test was used to

assess whether the mean gene expression between candidate

HKGs and non-HKGs was statistically different. When this set

of 2,087 HKGs was classified functionally using the Functional

Classification Catalogue (FunCat, Version 2.0) [28], known

functions were available for only 1,318 genes of them (for

details, see Text S1). For CpG island analysis, sequences

upstream of the annotated transcription start site of RefSeq

genes were obtained from the UCSC site and CpG islands in

their upstream sequences were searched using the CpGIE

software [29]. The statistical significance of differences in the

frequency of genes with CpG islands between HKGs and non-

HKGs was determined using Z-test (R program, http://www.

R-project.org). P,0.05 was considered to be significantly

different.

Among the 2,087 HKGs, potential ERGs were further

identified according to the following process: 1) the CV was

calculated for each UniGene cluster and 2) the genes in each

dataset were ranked by ascending CV values. Among the first 400

genes with the lowest CVs (approximately 20% of 2,087 HKGs),

we found 13 nERGs common to all four datasets (i.e. EST,

LongSAGE, ShortSAGE, and Affy). The CV values between

tERGs and nERGs were compared using Wilcoxon rank sum test.

Genomic variations of nERGs and tERGs
The Database of Genomic Variants (http://projects.tcag.ca/

variation/) was used to search for genomic variations of the 2,087

HKGs, including nERGs and tERGs.

RNA preparation from human frozen, FFPE tissues and
human cancer cell lines and qRT-PCR

The Department of Pathology at Samsung Medical Center

provided 26 human frozen tissues and 60 FFPE tissues and the

Korea Cell Line Bank (KCLB) or ATCC provided 22 human

cancer cell lines (Table S3). The 60 FFPE tissues consisted of 10

breast cancers, 8 normal stomach, 9 stomach cancers, 10 normal

ovaries, 4 ovarian adenomas, 9 ovarian borderline tumors and 10

ovarian cancers.

Total RNA isolation and cDNA synthesis from human samples

are described in detail in the Supplementary Materials and

Methods (Text S1). Total RNA from frozen tissues and cell lines

was isolated using Trizol (Invitrogen Life Technologies). The

inclusion criteria for the RNA samples were A260/280$1.80 and

rRNA (28S/18S) ratio$1.0. The integrity of RNA from frozen

tissues and cell lines was assessed using an Agilent Bioanalyzer

2100 (Agilent Technologies, Palo Alto, CA). Paradise Whole

Transcript RT Reagent system (Arcturus, CA, USA) was used for

RNA isolation and RT of FFPE tissues.

PCR primers and Universal Probe Library (UPL) numbers for

this study are provided in Table 1. Primers and probes for each gene

were designed to have a short amplicon size. All PCR reactions were

performed in a Lightcycler 2.0 (Roche Applied Science) according to

standard procedures (for details, see Text S1). PCR efficiency for

each gene in frozen tissues and cell lines was determined by both the

serial dilution method using Lightcycler 4.0 software and estimation

using the LinRegPCR program [30] (Table 1, Text S1). To

minimize experimental variation, the same gene in different samples

was tested in the same PCR run.

Gene expression stability analysis in qRT-PCR
To analyze gene expression stability, we used the geNorm v.3.4

[1] and NormFinder software [31]. Cp values were converted into

relative quantities for analysis with geNorm and NormFinder,

taking into consideration the PCR efficiencies of the genes, as

shown in Table 1 (for details, see Text S1). The optimal number of

ERGs for normalization was also determined using the geNorm

program. The statistical differences in gene expression stability

values between nERGs and tERGs were determined using

Wilcoxon rank sum test. The Pearson and Spearman correlation

between the gene expression stability calculated by geNorm or

NormFinder (M for geNorm and S for NormFinder) and the CV

calculated in each dataset were analyzed using R statistical

software. P,0.05 was considered to be significant.

Results

Identification and characterization of 2,087 candidate
HKGs

2,087 candidate HKGs were first identified using 0’s proportion

in each dataset (Figure 1, Table S2). According to the functional

classification by FunCat [28], genes with a variety of basic cellular

functions were included in this list. In particular, proteins

mediating protein fate (23%) and cellular transport (21%) had

the highest frequency (Figure 2A). This is in contrast to the

previously reported classifications of HKGs, in which metabolic

and ribosomal proteins were enriched [27,32]. We compared the

frequency of genes with CpG islands in the upstream sequences of

transcription start sites in HKGs relative to non-HKGs. Most

HKGs (70%) were found to possess a CpG island within 1,000 bp

from the transcription start site, consistent with previous studies

[33,34], while fewer CpG islands were found in the upstream

sequences of non-HKGs (P,0.001) (Table 2). Mean expression

level of HKGs was significantly higher than that of non-HKGs in

all datasets (P,0.001) (Figure 2B), also consistent with previous

work [27] (for detailed description on the expression of 2,087

HKGs in 4 datasets, see Text S2). CV values of the 2,087 genes

showed a poor correlation between the four datasets, whereas gene

expression showed a relatively higher correlation (Table S4).

Identification and characterization of 13 nERGs
A total of 13 nERGs common to the four datasets (ZNF207,

OAZ1, LUC7L2, CTBP1, TRIM27, GPBP1, ARL8B, UBQLN1,

PAPOLA, CUL1, DIMT1L, FBXW2, and SPG21, Table 3) were

identified from 2,087 HKGs. The highest proportion (5/13)

(ZNF207, OAZ1, CTBP1, PAPOLA, FBXW2) of genes were genes

involved in cellular metabolism. CpG islands were found in the

upstream region from transcription start site of all 13 nERGs

(Table S5).

The gene expression for each of the 13 nERGs showed a

significant correlation between datasets (P,0.001, Table S6) with

high Pearson correlation coefficients (.0.8), although the

Spearman correlations of EST versus Affymetrix (0.374,

Novel Reference Genes
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Table 1. Real-time PCR primers and Taqman probes used in this study.

Gene
Symbol Title

Accession
number

Probe* (UPL
Probe No.) Primer

Amplicon
size (bp)

PCR efficiency
(dilution)**

PCR efficiency
(LinRegPCR)***

GAPDH Glyceraldehyde-3
-phosphate dehydrogenase

NM_002046 60 Left 18 agccacatcgctcagaca 66 1.899 1.73560.048 (137)

Right 19 gcccaatacgaccaaatcc

ACTB Actin, beta NM_001101 64 Left 18 ccaaccgcgagaagatga 97 2.038 1.49160.034 (137)

Right 20 ccagaggcgtacagggatag

B2M Beta-2-microglobulin NM_004048 42 Left 19 ttctggcctggaggctatc 86 1.868 1.71760.068(140)

Right 23 tcaggaaatttgactttccattc

PPIA Peptidylprolyl isomerase A
(cyclophilin A)

NM_021130 Specific Probe# Left 22 catctgcactgccaagactgag 326 1.877 1.77360.058(142)

Right 19 tgcaatccagctaggcatg

HPRT1 Hypoxanthine
phosphoribosyltransferase 1

NM_000194 73 Left 24 tgaccttgatttattttgcatacc 102 1.800 1.77160.024 (143)

Right 20 cgagcaagacgttcagtcct

HMBS Hydroxymethylbilane
synthase

NM_000190 26 Left 18 tgtggtgggaaccagctc 92 1.954 1.43160.031(143)

Right 19 tgttgaggtttccccgaat

TBP TATA box binding protein NM_003194 3 Left 20 gctggcccatagtgatcttt 60 1.826 1.44760.038(142)

Right 21 cttcacacgccaagaaacagt

H6PD Hexose-6-phosphate
dehydrogenase

NM_004285 89 Left 23 tggagatcatcatgaaagagacc 74 1.874 1.83260.026 (64)

Right 20 gcgaatgacaccgtactcct

ZNF207 Zinc finger protein 207 NM_003457 27 Left 21 ctgtttcctagcacagcacaa 65 1.869 1.64860.018 (142)

Right 23 ggtttgaaatctgtaccaacagg

OAZ1 Ornithine decarboxylase
antizyme 1

NM_004152 74 Left 18 caccatgccgctcctaag 67 2.068 1.49860.059(142)

Right 20 gagggagaccctggaactct

LUC7L2 LUC7-like 2 (S. cerevisiae) NM_016019 85 Left 20 cgatcacacagcaagaatcc 60 1.829 1.70960.047 (143)

Right 19 agatcgatgtctgcgatgc

CTBP1 C-terminal binding
protein 1

NM_001012614
NM_001328

77 Left 18 actgcgtgaccctgcact 86 2.064 1.65160.055 (141)

Right 18 gccccttgtctcatctgc

TRIM27 Tripartite motif
containing 27

NM_006510
NM_030950

7 Left 19 caggcacgagctgaactct 71 1.908 1.69360.034 (143)

Right 20 agctgctcaaactcccaaac

GPBP1 GC-rich promoter
binding protein 1

NM_022913 4 Left 21 tcacttgaggcagaacacaga 75 1.844 1.71560.031 (141)

Right 23 agcacatgtttcatcattttcac

UBQLN1 Ubiquilin 1 NM_013438 73 Left 20 gaatcctgaccttgctgcac 92 1.864 1.72360.027(143)

Right 21 ttgggagctgttgtctcattt

ARL8B ADP-ribosylation
factor-like 8B

NM_018184 82 Left 19 aagcatgtgggagcggtat 66 1.838 1.49960.074(139)

Right 22 cgatctgcagcatctatcatgt

PAPOLA Poly(A) polymerase alpha NM_032632 78 Left 21 gctacgaagaccagtccattg 91 1.830 1.50960.032(141)

Right 20 tgttggtcacagatgctgct

CUL1 Cullin 1 NM_003592 65 Left 18 gcgaggtcctcactcagc 86 1.810 1.69560.027(139)

Right 26 ttctttctcaattagaatgtcaatgc

DIMT1L DIM1 dimethyladenosine
transferase 1-like
(S. cerevisiae)

NM_014473 77 Left 27
tccagtgttgtaaggatagaacctaag

75 1.906 1.65560.037(141)

Right 23 ccttactagaccatcccattcct

FBXW2 F-box and WD-40
domain protein 2

NM_012164 3 Left 19 cggctctgcagacttcact 111 1.891 1.63860.02(142)

Right 22 ttgcacttctgcaaaactacct

Novel Reference Genes
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P = 0.206) and shortSAGE versus Affymetrix (0.511, P = 0.076)

were not significant. CVs between the datasets were not

significantly correlated (P.0.05, Table S6).

To further confirm the suitability of the nERGs, gene copy

number variations (CNVs) of the nERGs, which can affect the

gene expression, were investigated by searching the Database of

Genomic Variants. As shown in Table 4, only OAZ1 and DIMT1L

were found to be located in a chromosome region where CNVs

were reported, indicating their expression might be deregulated by

genomic aberrations.

Comparison of tERGs and nERGs in dataset
We compared the 13 nERGs with 13 commonly used tERGs:

GAPDH, ACTB, HPRT1, PPIA, B2M, TBP, HMBS, RPLP0, PGK1,

GUSB, TFRC, H6PD, and ALAS1. The mean expression of the

nERGs was relatively lower than the highly expressed tERGs,

including GAPDH, ACTB, B2M, and PPIA, in all datasets and was

expressed at levels similar to those tERGs, which had lower

expression levels (Figure 3, Table S7). With respect to variation,

most of the tERGs showed relatively higher variation than the

nERGs and the mean CV values of nERGs were significantly

lower than those of tERGs (P,0.001 in EST, ShortSAGE, and

Affymetrix, P = 0.003 in LongSAGE, Table S8), supporting the

notion that the identified nERGs are generally expressed more

stably and at relatively lower levels than tERGs.

A search for genomic variation of tERGs revealed that many of

them (ACTB, GAPDH, PGK1, B2M, TBP, TFRC, ALAS1) were

located in the genomic locus where CNVs are known, whereas

only 2 genes among the nERGs were found in those regions

(Table 4), suggesting that the higher expression variation of some

tERGs might be due in part to CNVs.

Validation of nERGs by qRT-PCR
To validate both the level and stability of gene expression of

nERGs selected from the four datasets, the expression of 13

nERGs and 8 tERGs was measured in a total of 108 human

samples, including 26 frozen tissues, 22 cancer cell lines and 60

FFPE tissues, by qRT-PCR using Taqman probes (refer to Text

S1 for an explanation for why 8 tERGs among 13 tERGs were

chosen for qRT-PCR). Except PPIA, a small amplicon for each

gene was designed for the reliable measurement of its expression,

especially in FFPE tissues where RNA from these samples is

frequently degraded. When the PCR efficiency of each gene was

determined using the serial dilution method, each gene was

amplified at 90–100% efficiency (Table 1). The CVs of Cp values

confirmed that the between-assay precision in two or three repeats

was within 5% (data not shown).

First, the expression profiles of these genes in each of the 48

samples, including frozen tissues and cancer cell lines, are

presented in Figure 4A. The 13 nERGs were constitutively

expressed in all 48 samples. Seven tERGs showed a wide range of

expression (Cp: 13.52 to 29.39), but H6PD was not widely

expressed in frozen tissues and this gene was consequently

excluded from subsequent calculations. The Cp values of 13

nERGs ranged from 18.90 to 28.79 (Figure 4B). tERGs could be

divided into highly expressed genes (median ,20 cycles) and lowly

expressed genes (median.23 cycles). Highly expressed genes

included B2M, PPIA, GAPDH, ACTB and lowly expressed genes

consisted of HPRT1, TBP and HMBS. Of the nERGs, 12 genes

displayed an intermediate expression level between the highly

expressed and the lowly expressed tERGs (Figure 4B). The mean

expression level of nERGs was significantly lower than that of

highly expressed tERGs, whereas it was significantly higher than

that of lowly expressed tERGs (P,0.001, Table S9). ZNF207 was

the most highly expressed gene, followed by UBQLN1 and CUL1.

OAZ1 was the gene with the weakest expression.

We further investigated the expression of the 13 nERGs by

qRT-PCR in 60 FFPE tissues to test whether the nERGs could be

used in such tissues showing the significant degradation of mRNA.

Except DIMT1L, the expression of all genes was measurable in all

60 samples. The Cp range for tERGs was 18.85 to 33.02 and for

nERGs was 23.33 to 31.58 (Figure 4B). DIMT1L was not

amplified in 5 samples and therefore was excluded from further

expression stability analysis. The expression pattern in the FFPE

tissues was similar to that of previous 48 samples (26 frozen tissues

and 22 cancer lines) despite the discrepancy in sample types.

Remarkably, PPIA expression which was detected at high level in

frozen tissues/cell lines was observed at markedly decreased level

in FFPE tissues. This observation might be due to the long

amplicon size of PPIA (326 bp), whereas the amplicon size of other

genes is small ranging from 60 to 110 bp (Table 1), indicating that

small size of amplicon is required for the detection of gene

expression in FFPE tissues in which RNA is frequently degraded.

Gene expression stability of nERGs
We first assessed the gene expression stability (detailed in Text

S1) in 48 samples, including 26 frozen tissues and 22 cell lines

based on qRT-PCR using two programs, geNorm and NormFin-

der. All genes tested displayed relatively high expression stability

with low M values (,0.9), which were below the default limit of

1.5 in geNorm (Table 5a). GPBP1 and CUL1 were identified as the

two most stable genes. B2M was the least stable gene and had the

highest M value (0.888), followed by ACTB (0.843), HMBS (0.815),

and GAPDH (0.793). When calculated by NormFinder, TBP and

Gene
Symbol Title

Accession
number

Probe* (UPL
Probe No.) Primer

Amplicon
size (bp)

PCR efficiency
(dilution)**

PCR efficiency
(LinRegPCR)***

SPG21 Spastic paraplegia 21
(autosomal recessive, Mast
syndrome)

NM_016630 21 Left 20 gatgtctttttccggcagat 88 1.826 1.63660.021(142)

Right 21 cgagatggtcccaataaactg

*UPL probes were designed using Probe Finder in the Universal Probe Library (UPL) Assay Design Center (Roche Applied Science, Mannheim, Germany).
**PCR efficiency for each gene was determined by using serial dilutions of cDNA from MKN 74 cells for PCR and then calculating the efficiency using the Roche

Lightcycler software 4.0.
***PCR efficiencies of 48 samples in triplicate were calculated using LinRegPCR (Ramakers et al. Neurosci Lett, 2003. 339(1): p. 62–6.).
#F-ttcttgctggtcttgccatTcctgga-p (T, TAMRA-labeled; F, FAM-labeled; P, Phosphate).
doi:10.1371/journal.pone.0006162.t001

Table 1. Cont.

Novel Reference Genes
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Figure 2. Characterization of candidate HKGs identified in this study. (A) The functional distribution of candidate HKGs was classified by
FunCat. Among the 2,087 UniGene clusters, a total of 1,605 UniGene clusters which have GO terms under biological processes were classified
according to their major functional categories using FunCat (version 2.0) by mapping the GO terms to FunCat categories. A total of 1,318 UniGene
clusters were classified by FunCat. The number of UniGene clusters belonging to each category is presented in A. In some cases, UniGene clusters
mapped to two or more FunCat categories. (B) Comparison of gene expression between candidate HKGs and non-HKGs in each dataset. Box and
Whisker plots provide a simple description of a distribution of values by depicting the 25th and 75th percentile values as the bottom and top of a box,
respectively. The Y axis represents the natural logarithm transformed mean gene expression levels. The median expression values of HKGs and non-
HKGs are marked by horizontal lines in the boxes and the values are provided to the right of each box. *P,0.001.
doi:10.1371/journal.pone.0006162.g002

Novel Reference Genes
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PAPOLA were the two most stable genes (i.e. having the lowest S

values) (Table 5a). Similar to the results from geNorm, tERGs

including B2M, ACTB, GAPDH, HMBS and HPRT1, were found

to have less stable expression than nERGs. The mean gene

expression stability values in nERGs by geNorm and NormFinder

were significantly lower than those in tERGs in both 48 samples

and 60 FFPE tissues (P,0.05, Tables S10). Both analyses

demonstrated that most nERGs showed relatively higher expres-

sion stability compared to tERGs, suggesting that nERGs are

more suitable for normalization. Moreover, even when gene

expression stability was analyzed with relative expression level

calculated by PCR efficiencies using the LinRegPCR program,

most of nERGs showed a more stable expression than tERGs (data

not shown).

Pearson correlation analysis revealed the higher concordance of

both M and S values with CVs in the EST and shortSAGE

(Table 6) than in the Affymetrix. High correlation between M and

S (Pearson correlation: 0.953, P,0.001) was also observed,

indicating that both analyses produced similar results.

Consistently with frozen tissues and cell lines, both gene

expression stability values demonstrated that most nERGs with

low stability values are superior to tERGs in terms of expression

stability in FFPE tissues (Table 5b), proving the usefulness of our

nERGs as reliable measurements of gene expression in those

tissues. GPBP1 and PAPOLA were the two least variable genes in

geNorm and ARL8B and LUC7L2 were the top two ranked genes

in NormFinder. However, in the analysis by each tissue, FBXW2,

TRIM27, and CUL1 showed high stability values in breast, ovary,

and stomach, respectively (Table 7), suggesting that they have high

expression variation in each tissue. Also, S values by NormFinder

in the ovary and stomach FFPE tissues were calculated based on

the combination of intra- and inter-group variations between

normal and tumor samples. The relatively high S values of

TRIM27 in the ovary and CUL1 in the stomach suggest that their

expression might be regulated in specific tumors compared to their

normal tissues.

The optimal number of ERGs for normalization was deter-

mined using geNorm. In both the 48 human frozen and cell line

samples and 60 FFPE tissues, the optimal number of nERGs

required for normalization was fewer than when using tERGs

(Figure 5). Four tERGs and three nERGs were calculated as the

optimal number of ERGs needed in the 48 samples when using a

V of 0.15 as the cut-off value [1]. In the FFPE samples, V2/3 was

under 0.15 when using nERGs, suggesting that only two genes are

sufficient for optimal normalization, whereas four of seven tERGs

were necessary for accurate normalization. This indicates that

fewer ERGs are required for optimal normalization when using

our nERGs rather than using tERGs.

Discussion

In the present study, we identified nERGs in human samples

using a comparative analysis of different large datasets of human

gene expression profiles, while previous attempts to identify

nERGs that are superior to tERGs were limited to the analysis

of a microarray [10,18–21] or EST data [35].

Candidate HKGs were first selected and included 2,087 genes,

which is a larger number of genes than previously identified by

other groups [27,32,36]. Their characteristics, including high

levels of expression [27,36] and the prevalence of CpG islands in

the promoter regions [33,34], were in line with previous studies

based on smaller numbers of HKGs, reflecting that ‘‘real’’ HKGs

showing constitutive expressions in all tissues are enriched in our

list. Thus, this list can be used as a reliable source for the study of

HKGs.

The 13 nERGs further identified from candidate HKGs showed

relatively lower CV and lower expression than most of the tERGs

in all datasets. These findings were further confirmed by qRT-

PCR using frozen tissues and cell lines. Generally, the expression

of 13 nERGs was lower than the highly expressed tERGs and

higher or similar to the weakly expressed tERGs. The expression

stability values of the nERGs calculated by both programs also

demonstrated that nERGs are generally more stably expressed

than tERGs. Although there were slight differences in their

rankings between the two programs, PAPOLA, CUL1, TBP,

LUC7L2, GPBP1 and TRIM27 were found to be the genes with

the most stable expression in 48 samples. The observation that

TBP is one of the most stable genes is not surprising because

relatively lower variability of TBP among traditional ERGs was

already expected in datasets including EST and ShortSAGE

(Figure 3). On the other hand, our data further supported the

unsuitability of the most commonly used ERGs, like GAPDH,

ACTB, for normalization, in line with previous works [7,8,14].

Our nERGs were also successfully validated by qRT-PCR in

FFPE tissues. Despite the usefulness of archival FFPE tissue

specimens in conjunction with clinical data, frequent degradation

of RNA from FFPE tissues has been regarded as an obstacle in the

gene expression analysis of those samples [37]. The expression of

nERGs was measurable with reliable Cp values in all 60 FFPE

tissues and most of the nERGs outperformed tERGs with respect

to expression stability.

Table 2. Comparison of the proportion of genes with CpG islands in sequences upstream of the transcription start site in HKGs
and non-HKGs.

HKGs (n = 2,002)* Non-HKGs (n = 14,848)**

Upstream
sequences (bp) No. of genes

Frequency of genes with CpG
islands (%) No. of genes

Frequency of genes with CpG
islands (%) P value

5,000 1,516 76 8,036 54 ,0.001

2,000 1,456 73 7,410 50 ,0.001

1,000 1,410 70 7,048 47 ,0.001

*Of 2,087 genes, 2,002 UniGene clusters corresponded to upstream sequences downloaded from the UCSC site (http://hgdownload.cse.ucsc.edu/goldenPath/hg18/
bigZips/).

**A total of 16,850 UniGene clusters corresponded to upstream sequences downloaded from the UCSC site and the number of non-HKGs was calculated by subtracting
the 2,002 HKGs from the total 16,850.

CpG island criteria: length$500 bp, % GC$55, CpG o/e ratio$0.65.
doi:10.1371/journal.pone.0006162.t002
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Furthermore, the expression level of target gene can be

calculated relative to the expression level of one or multiple

nERGs using standard curve or comparative Ct(Cp) method in

quantitative gene expression analyses, including qRT-PCR. The

most suitable ERG or ERGs in the designed experiment can be

selected among 13 nERGs or combination of tERGs and 13

nERGs based on gene expression stability values calculated by the

geNorm and/or NormFinder program. Recently developed PCR

array, high throughput gene expression measurement using qRT-

PCR, also requires more suitable ERGs than conventional tERGs

for accurate quantification of gene expression [38]. Recently,

normalization using the geometric mean of multiple ERGs has

been considered to be more accurate for normalization [1],

especially in situations when no optimal ERG has been identified

Table 3. nERGs identified from four datasets.

UniGene
cluster

Gene
Symbol Gene Title EST SHORT SAGE LONG SAGE Affymetrix Gene Ontology

Mean CV 0’s P Mean CV 0’s P Mean CV 0’s P Mean CV Biological Process
Molecular
Function

Hs.446427 OAZ1 Ornithine
decarboxylase
antizyme 1

673.68 62.71 0.069 576.39 55.94 0 444.92 41.01 0 1860.9 22.07 Polyamine
biosynthesis

Ornithine
decarboxylase
inhibitor activity

Hs.9589 UBQLN1 Ubiquilin 1 111.34 60.19 0.31 75.93 61.3 0.036 71.77 49.75 0.111 919.32 26.81 Kinase binding

Hs.444279 GPBP1 GC-rich promoter
binding protein 1

132.98 56.92 0.241 63.11 61.65 0 80.72 51.79 0.111 746.56 26.6

Hs.208597 CTBP1 C-terminal binding
protein 1

136.74 48.53 0.138 213.99 62.01 0 112.96 50.6 0 481.51 24.72 Negative regulation
of cell proliferation;
Protein
phosphorylation;
Viral genome
replication

Protein C-
terminus binding;
Transcription
factor binding

Hs.253726 PAPOLA Poly(A) polymerase
alpha

216.15 65.36 0.172 118.24 58.02 0 89.5 50.88 0 451.23 27.68 mRNA
polyadenylation

RNA binding

Hs.250009 ARL8B ADP-ribosylation
factor-like 8B

132.27 55.79 0.379 134.21 61.55 0 59.19 55.14 0.111 418.28 26.81 Chromosome
segregation

a-tubulin binding;
b-tubulin binding;
GDP binding; GTP
binding; GTPase
activity

Hs.242458 SPG21 Spastic paraplegia 21
(autosomal recessive,
Mast syndrome)

120.35 59.44 0.31 76.41 57.83 0.036 73.3 49.12 0 415.64 29.35 Antigen receptor-
mediated signaling
pathway

CD4 receptor
binding

Hs.530118 LUC7L2 LUC7-like 2 (S.
cerevisiae)

132.76 59.55 0.172 74.65 65.41 0 57.21 50.39 0.111 386.79 22.9

Hs.500775 ZNF207 Zinc finger protein
207

233.29 62.27 0.034 165.68 56.77 0 154.32 52.88 0.111 358.69 18.38 Regulation of
transcription, DNA-
dependent

Transcription
factor activity;
Zinc ion binding

Hs.533222 DIMT1L DIM1
dimethyladenosine
transferase 1-like
(S. cerevisiae)

129.17 69.14 0.379 42.41 60.55 0.071 36.87 44.13 0.111 164.72 28.3

Hs.440382 TRIM27 Tripartite motif
containing 27

155.33 68.54 0.172 80.66 63.06 0 67.84 45.41 0.111 163.6 26.3 Cell proliferation;
Spermatogenesis

Metal ion binding;
Transmembrane
receptor protein
tyrosine kinase
activity

Hs.146806 CUL1 Culin 1 120.27 57.5 0.207 69.33 65.76 0.036 76.43 55 0.111 156.47 27.78 Cell cycle arrest;
G1/S transition of
mitotic cell cycle;
Induction of
apoptosis by
intracellular signals;
Negative regulation
of cell proliferation

?Protein binding

Hs.494985 FBXW2 F-box and WD-40
domain protein 2

97.45 68.65 0.379 40.27 58.47 0 23.54 51.61 0.111 69.32 28.36 Proteolysis Protein binding;
ubiquitin
conjugating
enzyme activity;
ubiquitin-protein
ligase activity

Mean: Mean gene expression, CV: Coefficient of Variation (%), 0’s P: 0’s proportion, GO terms were searched in the Gene Ontology site (http://www.geneontology.org/).
doi:10.1371/journal.pone.0006162.t003
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[31]. Moreover, the use of multiple ERGs is more important in the

expression analysis using FFPE tissues, where poor RNA quality

causes additional variations in gene expression [39]. Five tERGs

are included for the normalization of gene expression in the

Oncotype DXTM assay (Genomic Health) which is a clinical

validated multigene qRT-PCR test using FFPE tissues to predict

recurrence of breast cancer [40]. However, the superiority of our

nERGs was demonstrated by showing that a fewer number of

genes is required for normalization when using the nERGs as

compared with using the tERGs. Considering the limited

amounts of samples or experiment cost, nERGs also outper-

formed previous tERGs when multiple genes are needed for

reliable normalization. Taken together, nERGs will be a better

choice for more reliable normalization in gene expression

analysis using FFPE tissues.

The superiority of nERGs over tERGs is based in their lower

expression level as well as their high expression stability. Use of

ERGs with expression levels similar to target genes is recom-

mended so that the comparisons fall on the same linear scale

[19,41,42]. Therefore, our nERGs, with relatively lower expres-

sion, rather than GAPDH or ACTB showing high expression, can

be better candidates for normalization of a wide range of genes,

including weakly expressed genes. This is significant given that the

majority of transcripts in human tissues are expressed in low

abundance [36].

Remarkably, we observed no significant correlation between the

stability values calculated from qRT-PCR data and CV in the

Affymetrix data, which is in contrast to the significant correlation

between stability values and CV in the EST and SAGE dataset.

This suggests that EST or shortSAGE may be better sources for

exploring nERGs rather than microarrays, which have tradition-

ally been used as a source for screening ERG and supports our

initial hypothesis that the microarray might not be a good source

for ERGs.

Furthermore, nERGs identified here might be used as

reference for relative measurements of gene amplification, which

is a frequent genetic alteration leading to unregulated gene

expression in cancer [43]. As the relatively constant expression of

these genes in both normal and tumor tissues provides the

possibility that these genes are located in a chromosomal

region in which no genetic alterations are found in human

tumors, we investigated the genomic CNVs of nERGs using

publicly available databases. Most nERGs, except OAZ1 and

DIMT1L, were located in genomic regions where CNVs were

not reported, whereas many tERGs were located in regions with

CNVs. The relatively lower expression stability of OAZ1 and

DIMT1L, as well as tERGs like GAPDH and ACTB, might be

explained by these genomic aberrations. However, the suitability

of nERGs as a reference for the relative measurement of gene

amplification remains to be further investigated and validated

through experiments. Meanwhile, even genes with genomic

variations can be used for the normalization in gene expression,

provided that their expression is not affected by genomic

aberrations.

In conclusion, we have identified a set of candidate HKGs and

nERGs based on a comparative analysis of EST, SAGE, and

Affymetrix datasets. This is the first study using three different

platforms to identify nERGs, and most of the 13 ERGs identified

in these datasets were demonstrated to be more stably expressed

than tERGs through the validation using qRT-PCR in large

human samples including cell lines, frozen tissues and FFPE

tissues. Moreover, these nERGs were expressed at relatively lower

levels than most commonly used high expressing tERGs, making

them more suitable for normalization of transcripts from a wide

range of expression levels. We have also shown that fewer ERGs

are required for accurate normalization using nERGs than using

tERGs, especially in FFPE tissues when the use of multiple ERGs

is required.

Table 4. Gene copy number variations of nERGs and tERGs.

nERGs tERGs

Gene
Symbol

Genomic
location* Genomic Variation**

Gene
symbol

Genomic
location* Genomic Variation**

Variation type Locus ID References Variation type Locus ID References

ZNF207 17q11.2 RPLP0 12q24.23

OAZ1 19p13.3 Copy number 3199 Wong et al (2007) ACTB 7p22.1 Copy number 1487 Wong et al (2007)

LUC7L2 7q34 PPIA 7p13

CTBP1 4p16.3 GAPDH 12p13.31 Copy number 2368 Redon et al (2006)

TRIM27 6p22.1 PGK1 Xq21.1 Copy number 3567 Iafrate et al (2004)

GPBP1 5q11.2 B2M 15q21.1 Copy number 2773 Redon et al. (2006)

UBQLN1 9q21.33 GUSB 7q11.21

ARL8B 3p26.1 HPRT1 Xq26.2

PAPOLA 14q32.2 TBP 6q27 Copy number 1479 Redon et al (2006)

CUL1 7q36.1 TFRC 3q29 Copy number
Copy number

753 Iafrate et al (2004)
Redon et al. (2006)

DIMT1L 5q12.1 Copy number 1137 Redon et al (2006) HMBS 11q23.3

FBXW2 9q33.2 H6PD 1p36.22

SPG21 15q22.31 ALAS1 3p21.2 Copy number 590 Wong et al (2007)

*Genomic location was found using Ensembl (http://www.ensembl.org/index.html).
**Genomic variations were found using the Database of Genomic Variants (http://projects.tcag.ca/variation/, Human Genome Assembly Build 36 (hg18)).
doi:10.1371/journal.pone.0006162.t004
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Figure 3. Comparison of gene expression and CV between nERGs and tERGs in each dataset. (A) Comparison of gene expression
between 13 nERGs and 13 tERGs. (B) Comparison of CV between 13 nERGs and 13 tERGs. Empty squares represent nERGs identified in this study and
circles represent the tERGs.
doi:10.1371/journal.pone.0006162.g003
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Figure 4. The distribution of expression levels of 13 nERGs and 7 tERGs determined by qRT-PCR using Taqman probes in human
samples. (A) The distribution of mRNA levels of tested ERGs in 48 samples, including frozen tissues and cancer cell lines. (B) The mRNA levels of
tERGs (red) and nERGs (blue) in Cp values over all 48 samples (left) and 60 FFPE tissues (right). Values are given as ‘‘Crossing point’’ (Cp) values. All
measurements of qRT-PCR were repeated three times for frozen tissues and cell lines and twice for FFPE tissues and mean ‘‘crossing point’’ (Cp)
values of repeats were calculated. Box and Whisker plots provide a simple description of the distribution of values by depicting the 25th and 75th

percentile values as the bottom and top of the box, respectively. The median value is marked by a line within the box and the minimum and
maximum values are depicted by error bars, or whiskers, protruding from the box.
doi:10.1371/journal.pone.0006162.g004
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Table 5. nERGs and tERGs ranked according to their expression stability, as calculated by the two programs, geNorm and
NormFinder, based on qRT-PCR data in 48 frozen tissues/cell lines and 60 FFPE tissues.

(a) 48 frozen tissues/cell lines (b) 60 FFPE tissues

GeNorm NormFinder GeNorm NormFinder

Gene
Symbol

Average expression
stability M

Gene Symbol Stability
value S

Gene
Symbol

Average expression
stability M

Gene Symbol Stability
value S

GPBP1 0.496 TBP 0.276 GPBP1 0.409 ARL8B 0.233

CUL1 PAPOLA 0.28 PAPOLA LUC7L2 0.235

PAPOLA 0.536 CUL1 0.287 ARL8B 0.437 OAZ1 0.247

TBP 0.548 LUC7L2 0.29 CTBP1 0.454 CTBP1 0.251

LUC7L2 0.565 CTBP1 0.312 LUC7L2 0.483 UBQLN1 0.273

TRIM27 0.585 GPBP1 0.317 SPG21 0.509 SPG21 0.28

FBXW2 0.597 TRIM27 0.317 FBXW2 0.528 FBXW2 0.286

CTBP1 0.608 FBXW2 0.329 OAZ1 0.545 PAPOLA 0.29

UBQLN1 0.623 DIMT1L 0.364 UBQLN1 0.555 TRIM27 0.327

DIMT1L 0.637 PPIA 0.383 TRIM27 0.567 GPBP1 0.345

PPIA 0.661 UBQLN1 0.398 TBP 0.58 HPRT1 0.368

OAZ1 0.682 OAZ1 0.438 CUL1 0.593 CUL1 0.383

ZNF207 0.709 ARL8B 0.494 HPRT1 0.609 TBP 0.402

ARL8B 0.731 SPG21 0.502 ZNF207 0.625 HMBS 0.407

SPG21 0.749 ZNF207 0.502 HMBS 0.641 ZNF207 0.44

HPRT1 0.77 HPRT1 0.516 GAPDH 0.668 PPIA 0.461

GAPDH 0.793 HMBS 0.587 PPIA 0.692 GAPDH 0.527

HMBS 0.815 GAPDH 0.591 B2M 0.715 B2M 0.53

ACTB 0.843 ACTB 0.618 ACTB 0.737 ACTB 0.541

B2M 0.888 B2M 0.815

Low average expression stability value M and stability value S indicate the high expression stability.
doi:10.1371/journal.pone.0006162.t005

Table 6. Correlation between gene expression stability of nERGs and tERGs from qRT-PCR data and CV from each dataset.

48 frozen tissues/cell lines

EST-M EST-S ShortSAGE-M ShortSAGE-S LongSAGE-M LongSAGE-S Affy-M Affy-S M-S

Pearson 0.676 0.792 0.659 0.75 0.427 0.561 0.039 0.017 0.953

P value 0.001 ,0.001 0.002 ,0.001 0.061 0.01 0.869 0.944 ,0.001

Spearman 0.589 0.605 0.277 0.268 0.092 0.105 0.424 0.357 0.955

P value 0.006 0.005 0.237 0.254 0.701 0.661 0.063 0.123 ,0.001

60 FFPE tissues

EST-M EST-S ShortSAGE-M ShortSAGE-S LongSAGE-M LongSAGE-S Affy-M Affy-S M-S

Pearson 0.623 0.626 0.656 0.737 0.481 0.672 0.243 0.335 0.852

P value 0.004 0.004 0.002 ,0.001 0.037 0.002 0.317 0.161 ,0.001

Spearman 0.663 0.596 0.515 0.502 0.374 0.567 0.521 0.583 0.841

P value 0.002 0.008 0.024 0.03 0.115 0.013 0.022 0.009 ,0.001

M: average expression stability calculated by the geNorm program, S: stability value calculated by the NormFinder program. For 48 samples, 20 reference genes
including 13 novel genes and 7 classical genes, were used in the correlation analysis. For 60 FFPE tissues, 19 reference genes excluding DIMT1L were included in the
analysis.
doi:10.1371/journal.pone.0006162.t006
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Table 7. nERGs and tERGs ranked according to their expression stability, as calculated by the two programs, geNorm and
NormFinder, based on qRT-PCR data in each tissue type of FFPE tissues.

Breast FFPE (n = 10) Ovary FFPE (n = 33)* Stomach FFPE (n = 17)*

GeNorm NormFinder GeNorm NormFinder* GeNorm NormFinder*

Gene
Symbol

Average
expression
stability M

Gene
Symbol

Stability
value S

Gene
Symbol

Average
expression
stability M

Gene
Symbol

Stability
value S

Gene
Symbol

Average
expression
stability M

Gene
Symbol

Stability
value S

TBP 0.186 LUC7L2 0.080 ARL8B 0.336 ARL8B 0.050 CTBP1 0.296 OAZ1 0.097

CTBP1 UBQLN1 0.138 FBXW2 SPG21 0.072 TRIM27 HMBS 0.123

PAPOLA 0.199 CTBP1 0.152 CTBP1 0.361 UBQLN1 0.091 FBXW2 0.325 FBXW2 0.162

OAZ1 0.231 CUL1 0.153 SPG21 0.390 CTBP1 0.110 LUC7L2 0.354 PAPOLA 0.171

CUL1 0.245 TBP 0.173 UBQLN1 0.409 FBXW2 0.114 OAZ1 0.387 TRIM27 0.200

ARL8B 0.265 SPG21 0.190 LUC7L2 0.417 HPRT1 0.117 HMBS 0.406 B2M 0.202

GPBP1 0.282 B2M 0.212 OAZ1 0.436 TBP 0.129 GPBP1 0.430 GAPDH 0.207

UBQLN1 0.298 OAZ1 0.216 PAPOLA 0.464 LUC7L2 0.131 PAPOLA 0.446 LUC7L2 0.216

LUC7L2 0.307 ARL8B 0.219 GPBP1 0.482 CUL1 0.165 ARL8B 0.464 ARL8B 0.226

ZNF207 0.317 GPBP1 0.222 CUL1 0.498 OAZ1 0.177 TBP 0.483 ZNF207 0.230

B2M 0.335 HMBS 0.240 TBP 0.515 GPBP1 0.184 ZNF207 0.512 ACTB 0.266

SPG21 0.356 PAPOLA 0.246 ZNF207 0.535 PPIA 0.212 UBQLN1 0.533 PPIA 0.275

HMBS 0.374 TRIM27 0.253 HPRT1 0.556 PAPOLA 0.248 GAPDH 0.556 UBQLN1 0.285

TRIM27 0.389 ZNF207 0.305 TRIM27 0.572 ZNF207 0.253 SPG21 0.575 CTBP1 0.288

PPIA 0.417 ACTB 0.316 HMBS 0.590 B2M 0.285 HPRT1 0.592 SPG21 0.293

ACTB 0.438 PPIA 0.317 PPIA 0.620 HMBS 0.323 B2M 0.614 GPBP1 0.298

HPRT1 0.464 HPRT1 0.392 B2M 0.645 TRIM27 0.326 PPIA 0.635 TBP 0.336

FBXW2 0.489 FBXW2 0.447 GAPDH 0.674 ACTB 0.466 ACTB 0.657 CUL1 0.342

GAPDH 0.530 GAPDH 0.570 ACTB 0.705 GAPDH 0.496 CUL1 0.682 HPRT1 0.354

Best combination of two
genes

ARL8B and
SPG21

0.043 Best combination of two
genes

CTBP1 and
UBQLN1

0.066

*Gene expression stability S by NormFinder was calculated as an estimate of the combined intra and intergroup variation between normal and tumor tissues. For ovary
tissues (n = 33), 10 normal and 23 tumor tissues were included and 17 stomach tissues, including normal (n = 8) and tumor (n = 9) tissues, were used in the analysis.

Low average expression stability M and stability value S indicate the high expression stability.
doi:10.1371/journal.pone.0006162.t007
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Figure 5. Optimal number of ERGs for normalization calculated by the geNorm program. Variable V defines the pair-wise variation
between two sequential normalization factors containing an increasing number of genes. For example, V2/3 indicates the variation of the
normalization factor of two genes in relation to three genes. A large V indicates that the added gene should be included for calculation of the
normalization factor. 0.15 was proposed as a cut-off value, below which the inclusion of an additional reference gene is not required. Pair-wise
variation analysis to determine the number of ERGs required for accurate normalization was performed in 48 samples including human frozen tissues
and cell lines (A), 60 FFPE tissues (B), 33 ovary FFPE tissues (C) and 17 stomach FFPE tissues (D). For each case, the analysis was done for total ERGs,
tERGs and nERGs.
doi:10.1371/journal.pone.0006162.g005
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Table S10 Comparison of gene expression stability values

between nERGs and tERGs

Found at: doi:10.1371/journal.pone.0006162.s012 (0.04 MB

DOC)
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