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Abstract

Alzheimer’s disease (AD) is characterized by the deposition of aggregated beta-amyloid (Ab), which triggers a cellular stress
response called the unfolded protein response (UPR). The UPR signaling pathway is a cellular defense system for dealing
with the accumulation of misfolded proteins but switches to apoptosis when endoplasmic reticulum (ER) stress is
prolonged. ER stress is involved in neurodegenerative diseases including AD, but the molecular mechanisms of ER stress-
mediated Ab neurotoxicity still remain unknown. Here, we show that treatment of Ab triggers the UPR in the SK-N-SH
human neuroblastoma cells. Ab mediated UPR pathway accompanies the activation of protective pathways such as Grp78/
Bip and PERK-eIF2a pathway, as well as the apoptotic pathways of the UPR such as CHOP and caspase-4. Knockdown of
PERK enhances Ab neurotoxicity through reducing the activation of eIF2a and Grp8/Bip in neurons. Salubrinal, an activator
of the eIF2a pathway, significantly increased the Grp78/Bip ER chaperone resulted in attenuating caspase-4 dependent
apoptosis in Ab treated neurons. These results indicate that PERK-eIF2a pathway is a potential target for therapeutic
applications in neurodegenerative diseases including AD.
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Introduction

Alzheimer’s disease (AD), the most common form of dementia,

is a chronic neurodegenerative disease causing progressive

impairment of memory and other cognitive functions. Neuritic

plaques, neurofibrillary tangles, and neuronal loss represent the

main pathological characters in AD brains. Amyloid b-protein

(Ab), the central component of senile plaques, is produced from

sequential proteolytic cleavages of the type 1 transmembrane b-

amyloid precursor protein (APP) by b- and c-secretase [1,2].

Aggregated Ab has been shown to interfere with several cellular

processes and results the endoplasmic reticulum (ER) stress. ER

stress triggers a cellular stress response called the unfolded protein

response (UPR) intended to protect the cell against the toxic

aggregated proteins [3].

The UPR is initiated by the binding of the ER chaperone

GRP78/BiP to the misfolded proteins. Under normal conditions,

GRP78/Bip sequester three key signal transducers at the ER

membrane by forming the inactive complex; double-stranded

RNA-activated protein kinase-like ER kinase (PERK), transcrip-

tion factor ATF-6, and endoribonuclease IRE-1 [4,5,6]. Although

the activation mechanisms of these ER-stress sensors are not fully

understood, dissociation from GRP78/Bip seems to be required

for the activation of three key signal transducers. One probable

hypothesis is that the accumulating unfolded-protein preferentially

binds GRP/Bip, which dissociates from PERK, ATF-6, and IRE-

1. GRP78/Bip dissociation leads to autophosphorylation of PERK

and IRE-1, and mobilization of ATF-6 to the Golgi for activation

[7]. The activation of the UPR results in an overall decrease in

translation, increased protein degradation and increased levels of

ER chaperones, including GRP78/Bip [8], which consequently

increases the protein folding capacity of the ER. Eventually, the

cell might return to normal ER homeostasis or, under prolonged

ER stress, continue towards apoptosis. As neurons are highly

susceptible to the toxic effects of aggregated Ab of AD, ER-stress-

mediated cell death might have an important role in the

pathogenesis of this disease [5]. Recently, several reports showed

that the activation of UPR in neurons of AD brain [3] and

oligomeric Ab aggregates of Ab1-42 peptide induce mild ER stress

in neuronal cells [9]. Recent studies have demonstrated that

activation of the UPR is a one of representative marker in both

brain aging and age-related diseases of the brain. For example, the

activation of the PERK pathway has been reported in the aged

rodent models [10,11,12]. Similarly, studies have demonstrated in
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neurons of Alzheimer’s disease [3] and in models of Parkinson’s

disease [13] that there is evidence for activation of the PERK

pathway. Interestingly, phosphor-PERK stained neurons were

overlapped with tau positive neurons [3,14]. These data suggest

that the PERK pathway is participated in the pathogenesis of aged

related neurodegenerative diseases.

Activated PERK phosphorylates eukaryotic translation initia-

tion factor 2 subunit a (eIF2a). After stress-induced phosphory-

lation of eIF2a, global protein translation of normal cellular

mRNAs is repressed [15]. In parallel, translational initiation of

transcription factor ATF4 is selectively stimulated. ATF4 induces

the expression of downstream target genes such as GADD34,

CHOP/GADD153 and others, which participate in the control of

cellular redox status and cell death [12]. Importantly, the protein

phosphates-1 (PP1) complex is inhibited by small molecule drug

Salubrinal (Sal), which selectively blocks dephosphorylation of

phoshpo-eIF2a [16]. Maintaining levels of p-eIF2a by Sal

enhances cell survival in various cell lines against apoptosis

induced by the ER stressors [8,16].

However, the role of the UPR pathway, e.g. PERK signaling

pathway, has not been elucidated in ER stress mediated Ab
neurotoxicity. Here, we demonstrate that the selective activation of

PERK pathway is an early event of Ab induced ER stress. PERK-

eIF2a pathway promotes the induction of ER chaperones and

confers resistant to aggregated protein toxicity in neuronal cells.

Results

Ab activates UPR in SK-N-SH cells
Characterization of the aggregation status of Ab42 is one of the

critical issues in understanding the role of Ab in the Alzheimer’s

disease. When acting on neuronal cells, whether it is the fibrillar or

the non-fibrillar peptides shows different effect in neurotocixity.

Reports from in vitro toxicity studies have suggested that

aggregated Ab is more toxic agent than soluble Ab in cultured

neurons [1,17,18]. In this study, we analyzed the effect of

aggregation status of Ab42 on UPR in neuronal cell. For that

purpose, we prepared fresh and aged Ab peptide solutions and

their aggregation status were characterized by thioflavin-T (ThT)

fluorescence. As shown in Fig. 1A, fluorescence intensity of aged

Ab42, prepared after incubation of the peptide solution for 7 days

at 4uC, was significantly higher in comparing with fresh Ab42. In

contrast, the scrambled Ab42 (scrAb42) did not lead to any

significant increase in the Th-T fluorescence levels (Fig. 1A).

To test whether UPR is activated in SK-N-SH human

cholinergic neuroblastoma cells by aged Ab42, we analyzed

the levels of two known ER stress markers, Grp78/BiP and

CHOP [19], using semi-quantitative RT-PCR and Western blot

analysis. As shown in Fig. 1, Grp78/BiP and CHOP mRNA

expression significantly up-regulated by aged 10 mM Ab42

treatment from 6 h (Fig. 1B), consistent changes of protein

levels were observed (Fig. 1C). On the contrary, the expression of

Grp78/BiP and CHOP did not changed by treatment of fresh

Ab42 peptide and the scrAb42 peptide. (Figure S1A). These

results demonstrate that the aggregation status and the sequence

of amino acids of Ab peptide are critical for the activation of

UPR in neuronal cells.

Ab preferentially induces PERK-eIF2a pathway
To determine the activation status of three major ER stress

sensors, PERK, IRE1a, and ATF6a, we performed the Western

blot analysis with the antibodies against the phosphor-PERK,

Figure 1. Ab1-42 induces ER stress in SK-N-SH cells. A, Relative aggregation state of Ab peptides were measured by thioflavin-T fluorometric
assay in a cell-free system. Increased thioflavin-T fluorescence in aged Ab42 peptide revealed greaterb–sheet content in comparison with the fresh
Ab42 peptide but not in both fresh and aged of scrambled Ab42 peptides (scrAb42). Thioflavin-T fluorescence was monitored at 450 nm excitation
and 482 nm emission. The expression levels of mRNA (B) and protein (C) of human Grp78/Bip, CHOP were increased in SK-N-SH cells treated with
aged Ab time dependent manner. GAPDH and b-actin were used as the loading controls. Data were presented as means 6 SD from at least three
independent experiments. *P,0.001.
doi:10.1371/journal.pone.0010489.g001

PERK Protects Ab Neurotoxicity
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phosphor-IRE1a and ATF-6 in Ab-treated neuronal cells.

Interestingly, the levels of p-PERK and p-eIF2a in neurons were

significant increased after 6 h by Ab treatment (Fig. 2A). In

contrast, the level of p-PERK and p-eIF2a did not changed by

fresh Ab42 peptide and the scrAb42 peptide. (Figure S1B).

The activation of p-eIF2a was also detected in the immuno-

staining analysis. Staining intensity of cytoplasmic p-eIF2a level

was significantly increased by Ab treatment (Fig. 2B). These data

showed that PERK-eIF2a pathway was definitely induced by Ab
in neuronal cells. In contrast, the activities of the other two UPR

sensors, IRE1a and ATF6, did not changed in Ab treated

neuronal cells within 12 h (Fig. 2C). After 18 h, cleavage form of

ATF6a was slightly increased by Ab treatment but its induction

was not as prominent as that of PERK-eIF2a (Fig. 2C). These

results indicate that Ab preferentially induces PERK-eIF2a
pathway. The expression level of XBP-1 mRNA was increased

by Ab treatment but, unconventional splicing of XBP-1 mRNA,

which is mediated by the endonuclease activity of IRE1a, was not

detected in Ab treated neuronal cell (Fig. 2D). These results

indicate that the induction of ER stress by Ab is not mediated via

the IRE1-XBP1 pathway at least by 18 h after Ab treatment. In

summary, the activation of UPR in Ab treated neuronal cells was

detected as phosphorylation of PERK, p-eIF2a, and cleavage of

ATF6. However, short-term treatment of Ab (within 6 h)

selectively augmented activation of the PERK pathway in

neurons.

Effects of PERK knockdown on Ab-induced neuronal cell
death

To elucidate the role of PERK-eIF2a pathway in ER stress-

mediated neuronal cell death by Ab treatment, we knocked down

expression of PERK by using siRNA against PERK. Transfection

of PERK siRNA, but not control siRNA significantly reduced

endogenous PERK mRNA levels (Fig. 3A). We then have

assessed the role of PERK on ER stress mediated Ab
neurotoxicity. When treated with Ab in SK-N-SH cells, silencing

of PERK showed slightly enhanced cell death in comparison

with those transfected with the control siRNA (Fig. 3B). These

results indicate that PERK may play a role in cell survival

mechanism rather than apoptosis on ER stress mediated Ab
neurotoxicity.

Next, we further tested whether knockdown of PERK abolishes

eIF2a phosphorylation induced by Ab. As expected, Ab-induced

eIF2a phosphorylation was significantly reduced in PERK

knockdown cells (Fig. 3C). Grp78/Bip, ER-resident chaperone

protein, is crucial for the modulation of UPR pathway under ER

stress condition and functions as a cytoprotective protein in

stressed cells [5]. Also, we tested the effect of siRNA silencing of

PERK on the levels of Grp78/Bip. PERK knockdown significantly

repressed the levels of Grp78/Bip induced by Ab (Fig. 3C). These

data indicate that PERK participates in the activation of p-eIF2a
and Grp8/Bip in Ab-mediated ER stress response in neuronal

cells.

Figure 2. Ab1-42 induces activation of PERK and eIF2a in SK-N-SH cells. A, Western blotting with anti-p-PERK (top) and anti-p-eIF2a (middle)
in SK-N-SH cells treated with Ab show the activation of PERK and eIF2a from 6 h. B, Immunostaining of p-eIF2a after 6 h Ab treatment show the
increased staining in cytoplasm. C, Western blotting with anti-p-IRE1a and anti-ATF-6 in SK-N-SH cells treated with Ab. D, Unconventional splicing of
the XBP1 mRNA was not detected after Ab treatment whereas Tunicamycin (TM; 2 mg/ml) treatment used as the positive control generated the
spliced form of the XBP1 mRNA. GAPDH and b-actin were used as the loading controls. Scale bar: 10 mm. *P,0.05.
doi:10.1371/journal.pone.0010489.g002
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Effects of Salubrinal, a selective activator of eIF2a, on
Ab-induced neuronal cell death

Salubrinal (Sal), a small molecule that protects cells from ER

stress induced apoptosis by selectively activating an eIF2a branch

of the UPR pathway [16]. When cells are challenged with ER

stress, phosphorylated eIF2a is increased which mediates both a

transient decrease in global translation and the translational up-

regulation of selected stress-induced mRNAs. Phospho-eIF2a (p-

eIF2a) is dephosphorylated by protein phosphatase-1 (PP1)

complex. Importantly, the PP1 complex is inhibited by Sal, which

selectively blocks dephosphorylation of p-eIF2a but not other PP1

substrates [16].

To investigate whether Sal has the ability to prevent neuronal

apoptosis induced by Ab, we treated various concentration of Sal

for 2 h before Ab treatment and assessed cell viability using

alamarBlue assay. While cell viability was decreased by treatment

of Ab, pre-treatment with Sal significantly attenuated Ab-induced

neuronal cell death from 25 mM. Pre-treatment with 100 mM Sal

reduced Ab-induced neuronal cell death by 36.362.8% (Fig. 4A

and Figure S2). In addition, Ab-mediated cell death was

significantly reduced by pre-treatment with 100 mM Sal compared

to Ab treatment alone from 24 h (Fig. 4B).

In humans, caspase-4, which was identified as the homologous

gene to mouse caspase-12, has been shown to be specifically

activated in ER stress-induced apoptosis and Ab-induced neuronal

cell death [20]. To determine whether Ab-induced neuronal cell

death required activation of apoptotic proteases, we measured the

activities of caspase-4 and caspase-3. Ab treatment increased

caspase-4 activity by 1.4-fold, whereas pre-treatment with Sal

reduced the caspase-4 activity to half of those in cells treated

with Ab only (Fig. 4C). This protective effect on neuronal

cell death was also detected in the activity of caspase-3

(Fig. 4D) and the apoptotic morphological changes of nuclei

(Figure S3).

Effects of Salubrinal on UPR modulator Grp78/Bip
Since PERK-eIF2a pathway may play a crucial role in cell

survival rather than apoptosis in Ab-induced neuronal cell death,

we examined whether Sal affects on the induction of p-eIF2a and

Grp78/Bip in SK-N-SH cells exposed to Ab and/or Sal. As shown

in Fig. 5, in the presence of Sal, Ab increased eIF2a phophoryla-

tion from 3 h, whereas Ab only increased eIF2a phophorylation

after 6 h. In the absence of Sal, the level of Grp78/Bip expression

was not changed by 6 h after Ab treatment. In contrast, pre-

treatment of Sal caused the highest induction of Grp78/Bip

compared to Ab alone. Taken together, these findings suggest that

Sal, the selective activator of eIF2a, enhances Grp78/Bip

expression in neuronal cells. Up-regulation of Grp78/Bip

dependent PERK-eIF2a pathway seems to be a neuroprotective

role against Ab-induced neurotoxicity.

Discussion

The results of this study are the first to show the protective effect

of PERK pathway in Ab mediated neuronal cell death. We show

that treatment of Ab1-42 triggers the UPR in the SK-N-SH

human neuroblastoma cells. This event accompanies the activa-

tion of protective pathways of the UPR such as Grp78/Bip and

PERK-eIF2a pathway, as well as the apoptotic pathways of the

UPR such as CHOP and caspase-4. Previous studies reported that

the induction of Grp78/Bip and phosphorylated PERK appeared

in the brain of AD patients which is regarded as an early

phenomenon in the pathology of AD [14]. ER stress specific

caspase-4 is involved in neurotoxicity induced by Ab25-35 and

Ab1-42 [20].

Figure 3. PERK siRNA reduces the neuronal cell viability by Ab treatment. A, PERK siRNA transfection was confirmed by the PERK RT-PCR
analysis. B, The cell viability in PERK siRNA transfection with Ab treatment was reduced compared with Ab treatment alone. Data were presented as
means 6 SD from at least three independent experiments. C, PERK siRNA transfection with Ab treatment suppressed the activated eIF2a and Grp78/
Bip by Ab treatment alone. *P,0.05, control siRNA + Ab versus PERK siRNA + Ab.
doi:10.1371/journal.pone.0010489.g003

PERK Protects Ab Neurotoxicity
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Mutations in the Presenilin genes PS-1 and PS-2 are the most

common causes of early onset familial AD. It has been shown that

these proteins are located predominantly within the ER [21]. The

ER has been identified as the site where the highly toxic

amyloidogenic Ab peptide 1–42 is generated [22], and in brains

manifesting sporadic AD, the ER-resident protein disulfide-

isomerase (PDI) activity has been shown to be suppressed by S-

nitrosylation [23]. Furthermore, PS-1 mutations linked to AD

impair UPR signaling by inhibiting activation of PERK, IRE1 and

ATF6 [24,25]. Conversely, other studies have reported that

phosphorylation of PERK and eIF2a has been found in neurons of

AD, suggesting activation of UPR [14,26].

During the last years, several evidences suggested that early

intraneuronal accumulation of Ab peptides is one of the key events

leading to neuronal dysfunction in AD patients [27]. Synthetic

Ab1-40 and Ab1-42 are amyloidogenic and neurotoxic peptides

that have been widely used to mimic in vitro the degenerative

process that occurs in the brain of AD patients [28]. Previous

reports have been shown that extracellularly applied Ab can be

taken up by cultured neuronal cell lines [27,29,30] and co-

localized in the endosomes/lysosomes or mitochondria [31,32]. In

addition, extracellularly treated Ab aggregates induce mild ER

stress in neuronal cells [9]. We thought that several mechanisms

are involved in the Ab-induced ER stress. Recently, Oh et al. [33]

suggested that extracellular Ab peptides enter the cell and inhibit

Figure 4. PERK activator Salubrinal attenuates Ab1-42-induced neuronal apoptosis through the regulation of Grp78/Bip and
caspase-4. A, Salubrinal protects neuronal cells against Ab1-42-induced cell death. Dose-dependent protection by Salubrinal of SK-N-SH cells
treated with Ab and various concentrations of Salubrinal as indicated. B, Co-treatment of Salubrinal and Ab increased the neuronal cell viability
compared with Ab treatment. Caspase-4 (C) and -3 activity (D) induced by Ab was suppressed by the co-treatment of Salubrinal and Ab. Data were
presented as means 6 SD from at least three independent experiments. *P,0.05, control versus vehicle alone; #P,0.05, control versus Ab alone.
doi:10.1371/journal.pone.0010489.g004

Figure 5. Western blot analyses with anti-p-eIF2a and anti-
Grp78/Bip in SK-N-SH cells show that the co-treatment of
Salubrinal and Ab activated eIF2a at 3 h and Grp78/Bip at 6 h.
b-acitn was used as the loading controls. *P,0.05.
doi:10.1371/journal.pone.0010489.g005

PERK Protects Ab Neurotoxicity
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the proteasome activity. Proteasome is the important machinery

for ER-associated degradation (ERAD), which carries out

eliminating the misfolded protein [34]. Another possible mecha-

nism is the effect on calcium channel currents. Ab affects calcium

homeostasis by blocking Calcium influx at the plasma membrane

or by perturbing Calcium storage in the ER [35,36]. Therefore, it

is possible that the proteasome dysfunction and the disturbance of

calcium homeostasis result in the activation of UPR. The PERK-

eIF2a pathway is the immediately early response among three

UPR pathways, which leads to global translational attenuation

[37]. These results suggest that the activation of PERK-eIF2a

pathway induced by the internalized Ab in the cytoplasm. Here we

showed that the induction of eIF2a phosphorylation and Grp78/

Bip by the treatment of eIF2a activator, Salubrianal, attenuated

Ab-induced neuronal cell death. These results suggests that

PERK-eIF2a pathway is necessary for cell survival mechanism

rather than cell death in this event, in agreement with results of

other reports [16,38]. Up-regulation of the ER chaperone protein

Grp78/Bip has been recently noted in investigating the action

mechanism of novel small molecules for diseases related to ER

stress [8,39]. Under conditions associated with ER stress,

misfolded proteins accumulate in the ER lumen, a pathologic

process resulting in the activation of the UPR pathway to combat

the harmful effects of ER stress through the activation of ER

chaperones such as Grp78/Bip. The Grp78/Bip was discovered as

cellular proteins induced by glucose starvation [40]. Residing

primarily in the ER, Grp78/Bip plays critical roles in the cellular

stress of various diseases. In addition to facilitating proper protein

folding, preventing intermediates from aggregating, and targeting

misfolded protein for proteasome degradation, Grp78/Bip also

binds Ca2+ and serves as an ER stress signaling regulator [40,41].

Grp78/Bip is induced by ER stress for protecting against tissue or

organ damage under pathologic conditions such as neurotoxic

stress, myocardial infarction, and arteriosclerosis [41,42]. Indeed,

overexpression of ER chaperones such as Grp78/Bip, calnexin,

and Grp170/Orp150 suppressed the production Ab, a major

component of extracellular senile plaques in AD [43].

Up-regulation of Grp78/Bip dependent PERK-eIF2a pathway

is supposed to function as a neuroprotective role against Ab
neurotoxicity. In supporting this hypothesis, Sal, an activator of

eIF2a of the UPR pathway, enhances Grp78/Bip expression for

maintaining the normal ER homeostasis and cell viability.

However, it is possible that Sal would impact differently on the

other cellular signaling pathway. Additional further studies will be

required in various cell system and animal models to understand

fully the precise mechanism of Sal.

In summary, our results show that ER stress could be an

important mechanism of early pathogenesis in Ab1-42 induced

neurotoxicity. In particular, the initial activation of the UPR

mediated by PERK-eIF2a pathway might play a neuroprotec-

tive role to restore cellular homeostasis against Ab-induced ER

stress, thereby increase cell survival. On the basis of these data,

we propose that the PERK-eIF2a pathway be part of the

potential target for therapeutic applications in several neurode-

generative diseases related to pathological ER stress including

AD.

Materials and Methods

Cell culture
SK-N-SH human neuroblastoma cells were obtained from

American Type Culture Collection and cultured at 37uC in

Dulbecco’s Modified Eagle’s Medium (DMEM) supplemented

with 10% heat-inactivated FBS in a humidified 95% air, 5% CO2

incubator. Cell culture reagents were purchased from Gibco BRL.

Salubrinal (Sal) and Tunicamycin (TM) were purchased from

Tocris and Assay designs, respectively.

Ab1-42 preparation
The synthetic peptide Ab1-42 (Ab42) and scrambled Ab1-42

(scrAb42) were purchased from Biosource and rPeptide, respec-

tively. The peptides were dissolved in D.W to 500 mM or in a

diluted ammonia solution for facilitating peptide solubilization.

Ab1-42 or scrambled-Ab42 aliquots were then store at 220uC
until being used (fresh samples; Ab42 or scrAb42 peptide), or were

incubated for 1 week at 4uC before use (aged samples; Ab42 or

scrAb42 peptide).

Aggregation state analysis of Ab peptide
The fibril formation of Ab peptides was measured by a

thioflavin-T fluorometric assay as previously described with some

modifications [44,45,46]. Fresh or aged Ab peptide-containing

samples were added to 3 mM thioflavin-T solution in a 50 mM

glycine-NaOH buffer (pH 8.5). Fluorescence was measured at

450 nm excitation and 482 nm emission using a fluorescence

spectrometer (Perkin-Elmer LS50). Each sample was determined

in triplicates.

Cell viability (alamarBlue assay)
For assessing apoptosis, alamarBlue assay was performed as

described previously [47]. SK-N-SH cells were plated on 96-well

plates (Nunc) at a density of 15,000 cells/well, in 100 ml of 10%

FBS/MEM and incubated for 24 h. 2 h before 10 mM Ab
treatment, the media was replaced with 1% FBS/MEM. At the

end of the treatment, 10 ml of alamarBlue agent (Serotec) was

added. The cells were incubated for 3 h and then absorbance of

the cells was measured at a wavelength of 570 nm using a

microtiter plate spectrophotometer (FLUOstar Optima). The

background absorbance was measured at 600 nm and subtracted.

The cell viability was defined as [(test sample count)2(blank

count)/(untreated control count)2(blank count)]6100.

Hoechst 33258 staining
SK-N-SH cells were fixed with 4% paraformaldehyde for

20 min and then stained with 8 mg/ml of Hoechst dye 33258

(Sigma-Aldrich) for 5 min. They were washed twice

with phosphate-buffered saline and observed using Axiovert

200 M equipped with ApoTom (Carl Zeiss). Dead cells and

apoptotic bodies were characterized by condensed or fragmented

nuclei.

Caspase substrate cleavage assays
Caspase-3 and -4 activities were measured using colorimetric

assay kits (BioVision Lab) as described previously [48]. Briefly,

cells were collected and washed with ice-cold PBS and then

resuspended in chilled lysis buffer for 20 min on ice. The

supernatant was collected by centrifugation at 10,000 g for

5 min and assayed for protein content. For caspase activity

measurements, cell extracts (20 mg protein) were incubated with

0.5 mM Ac-DEVD-pNA (caspase-3) or 0.5 mM Ac-LEVD-pNA

(caspase-4) in a final volume of 100 ml at 37uC for 1 h. The release

of the chromogenic compound pNA from the parent substrates

was measured by absorbance at 405 nm using a microtiter plate

spectrophotometer (FLUOstar Optima). Ac-DEVD-CHO (cas-

pase-3) or Ac-LEVD–CHO (caspase-4) was used as a caspase-

specific inhibitor (Sigma-Aldrich). Enzymatic activity is expressed

as arbitrary units of relative value.

PERK Protects Ab Neurotoxicity

PLoS ONE | www.plosone.org 6 May 2010 | Volume 5 | Issue 5 | e10489



RT-PCR analysis
Total RNA was isolated from the cells by using Trizol Reagent

(Invitrogen) according to the manufacturer’s instructions. cDNA

was synthesized by using Superscript II Reverse Transcription

system (Invitrogen). For RT-PCR, AccuPower PCR premix

(Bioneer) was mixed with each primer. CHOP primers 59-

TTCTCTGGCTTGGCTGACTG-39 (forward), 59-CTGCGT-

ATGTGGGATTGAGG-39 (reverse); Grp78/Bip primers 59-

GCTCGACTCGAATTCCAAAG-39 (forward), 59-TTTGTC-

AGGGGTCTTTCACC-39 (reverse); XBP-1 primers 59-TAAGA-

CAGCGCTTGGGGATC-39 (forward), 59-CTGGGGAAGGG-

CATTTGAAG-39 (reverse); PERK primers 59-ATCCCCCATG-

GAACGACCTG-39 (forward), 59-ACCCGCCAGGGACAAAA-

ATG-39 (reverse); GAPDH primers 59- GGGGCTCTCCAGAA-

CATCAT-39 (forward), 59-AAGTGGTCGTTGAGGGCAAT-39

(reverse). Amplification conditions were as follows: single cycle of

94uC for 5 min followed by 30 cycles of 94uC for 30 s, 58uC for

30 s and 72uC for 30 s, and the final single cycle of 72uC extension

for 7 min.

Western blot analysis
Total proteins from SK-N-SH cells were isolated using the

PROPREP protein extraction buffer (iNtRon biotechnology).

Protein preparation and SDS-PAGE/immunoblotting were per-

formed as previously described [48]. The cell homogenate was

centrifuged at 1,000 g at 4uC for 10 min to discard unbroken or

coarse cell debris and the resulting supernatant (RIPA lysate) was

used for immunoblotting. Protein concentrations of RlPA lysates

were determined by a modified Bradford method using BSA as a

standard. Sample buffer (5% b-mercaptoethanol, 15% glycerol,

3% SDS, 0.1 M Tris, pH 6.8) was added to the aliquots (50 mg of

protein) of the lysates, boiled for 3 min, and then resolved by

8,12% SDS-polyacrylamide gel electophoresis (PAGE) under

reducing conditions. The resolved proteins were transferred onto

nitrocellulose membranes (Amersham Pharmacia Biotech, Littel

Chalfont, UK) using a semidry trans-blot system (Schleicher &

Schuell, Dassol, Germany). The blots were blocked for 2 h at

room temperature with tris-buffered saline (TBS) (10 mM Tris,

pH 7.5, 100 mM NaCl) containing 5% nonfat dry milk. The blots

were washed three times with TBS, and then incubated at room

temperature overnight with Anti-KDEL (1:1000, Assay designs),

anti-GADD153/CHOP (1:1000, Santa Cruz Biotechnology), anti-

phospho-PERK (1:800, Santa Cruz Biotechnology), anti-phospho-

eIF2a (1:1000, Cell Signaling), anti-phospho-Ire1a from (1:800,

Abcam), anti-ATF6a (1:1000, Santa Cruz Biotechnology), or b-

actin (1:2000, Abcam) were used for primary antibodies in TBST

(10 mM Tris, pH 7.5, 100 mM NaCl, 0.05% Tween 20)

containing 1% nonfat dry milk. The next day, the blots were

washed three times with TBST, and then incubated for 1 h at

room temperature with horseradish peroxidase (HRP)-conjugated

secondary antibodies (1:2000 dilution) (Santa Cruz Biotechology)

in TBST containing 1% nonfat dry milk. After washing three

times with TBST, the protein was visualized using the ECL

detection system (Amersham Pharmacia Biotech).

Immunocytochemisty
Immunostaining was performed as described previously [49].

Cells grown on glass cover slides, were washed with PBS and fixed

in 10% formalin solution containing 4% formaldehyde for 20 min

at RT, then incubated with Phospho-eIF2a (1:1000, Cell

Signaling) primary antibody, revealed with anti-rabbit IgG Alexa

594 secondary antibody (1:200, Molecular Probe). After reaction

with secondary antibodies, the cells were stained with 100 nM

DAPI (49,6-diamidino-2-phenylindole)(Molecular Probes) for

5 min, and mounted. Fluorescence-labeled cells were visualized

using Axiovert 200 M equipped with ApoTom (Carl Zeiss).

Small interference RNA (siRNA) for PERK
SK-N-SH cells were seeded onto 6-well plates and allowed to

reach 50% confluence on the day of transfection. The small

interfering RNA (siRNA) constructs used were obtained as the

siGENOME SMARTpool reagents (Dharmacon), the siGEN-

OME SMARTpool PERK (M-004883-03-0020). The non-

targeting siRNA control, SiConTRol non-targeting SiRNA pool

(D-001206-13-20) was also obtained from Dharmacon. Cells were

transfected with 100 nM siRNA diluted in Opti-Eagle’s Minimal

Essential Medium (MEM) using Lipofectamine reagent (Invitro-

gen) according to the manufacturer’s transfection protocol.

Statistical analysis
All data are expressed as the means 6 SD. To determine the

significance of differences between the means of two groups, an

unpaired two-tailed Student’s t-test was applied to study the

relationship between the different variables. To determine the

significance of differences among the means of several groups, one-

way analysis of variance (ANOVA) followed by Scheffe’s post-hoc

tests were applied. Statistical significance was determined via

ANOVA followed by Scheffe’s post-hoc tests. A p-value of ,0.05

was considered to be significant.

Supporting Information

Figure S1 Aged Ab1-42 peptide induces ER stress and

activation of PERK-eIF2a in SK-N-SH cells. Cells were treated

with Ab42 peptide or scrambled Ab42 peptide (scrAb42) in fresh

or aged condition. A, The expression levels of protein of human

Grp78/Bip (top) and CHOP (middle) were increased in SK-N-SH

cells treated with aged Ab42 but not fresh Ab42 at 18 h. B,

Western blotting with anti-p-PERK (top) and anti-p-eIF2a
(middle) in SK-N-SH cells treated with aged Ab42 show the

activation of PERK and eIF2a from 6 h but not fresh Ab42. The

scrambled Ab42 peptides (scrAb42) did not lead to any significant

increase in both fresh and aged condition, demonstrating that the

specific sequence of amino acids of Ab peptide is needed for the

induction of ER stress and the activation of PERK-eIF2a. b-actin

was used as the loading control (bottom).

Found at: doi:10.1371/journal.pone.0010489.s001 (2.23 MB TIF)

Figure S2 Effects of Salubrinal on cell viability in SK-N-SH

cells. Cells were treated with various concentrations of Salubrinal

as indicated. Tunicamycin (TM, 2 mg/ml) was used as the positive

control. Cell viability was measured by alamarBlue assay from

48 h after each treatment. *P,0.01, versus control (vehicle alone).

Found at: doi:10.1371/journal.pone.0010489.s002 (1.18 MB TIF)

Figure S3 Salubrinal inhibits Ab1-42-induced neuronal apop-

tosis. Cells were stained with Hoechst 33258 staining. Dead cells

were identified by morphological changes, such as nuclei

fragmentation (arrowhead), compared with normal cell nuclei.

Scale bar: 10 mm.

Found at: doi:10.1371/journal.pone.0010489.s003 (2.50 MB TIF)
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