A novel light-dependent selection marker system in plants

Cited 22 time in scopus
Metadata Downloads
A novel light-dependent selection marker system in plants
Serry Koh; H Kim; J Kim; E Goo; Y J Kim; O Choi; N S Jwa; J Ma; T Nagamatsu; Jae Sun Moon; I Hwang
Bibliographic Citation
Plant Biotechnology Journal, vol. 9, no. 3, pp. 348-358
Publication Year
Photosensitizers are common in nature and play diverse roles as defense compounds and pathogenicity determinants and as important molecules in many biological processes. Toxoflavin, a photosensitizer produced by Burkholderia glumae, has been implicated as an essential virulence factor causing bacterial rice grain rot. Toxoflavin produces superoxide and H2O2 during redox cycles under oxygen and light, and these reactive oxygen species cause phytotoxic effects. To utilize toxoflavin as a selection agent in plant transformation, we identified a gene, tflA, which encodes a toxoflavin-degrading enzyme in the Paenibacillus polymyxa JH2 strain. TflA was estimated as 24.56kDa in size based on the amino acid sequence and is similar to a ring-cleavage extradiol dioxygenase in the Exiguobacterium sp. 255-15; however, unlike other extradiol dioxygenases, Mn2+and dithiothreitol were required for toxoflavin degradation by TflA. Here, our results suggested toxoflavin is a photosensitizer and its degradation by TflA serves as a light-dependent selection marker system in diverse plant species. We examined the efficiencies of two different plant selection systems, toxoflavin/tflA and hygromycin/hygromycin phosphotransferase (hpt) in both rice and Arabidopsis. The toxoflavin/tflA selection was more remarkable than hygromycin/hpt selection in the high-density screening of transgenic Arabidopsis seeds. Based on these results, we propose the toxoflavin/tflA selection system, which is based on the degradation of the photosensitizer, provides a new robust nonantibiotic selection marker system for diverse plants.
PhotosensitizerRiceSelection marker systemtflAArabidopsisToxoflavin
Appears in Collections:
Division of Research on National Challenges > Plant Systems Engineering Research > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.