Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85 = 고초균 유래 DNJ 생합성 유전자 동정

Cited 28 time in scopus
Metadata Downloads
Title
Identification of the genes involved in 1-deoxynojirimycin synthesis in Bacillus subtilis MORI 3K-85 = 고초균 유래 DNJ 생합성 유전자 동정
Author(s)
K D Kang; Y S Cho; Ji Hye Song; Y S Park; J Y Lee; K Y Hwang; S K Rhee; J H Chung; Oh Suk Kwon; S I Seong
Bibliographic Citation
Journal of Microbiology, vol. 49, no. 3, pp. 431-440
Publication Year
2011
Abstract
1-Deoxynojirimycin (DNJ), a D-glucose analogue with a nitrogen atom substituting for the ring oxygen, is a strong inhibitor of intestinal α-glucosidase. DNJ has several promising biological activities, including its antidiabetic, antitumor, and antiviral activities. Nevertheless, only limited amounts of DNJ are available because it can only be extracted from some higher plants, including the mulberry tree, or purified from the culture broth of several types of soil bacteria, such as Streptomyces sp. and Bacillus sp. In our previous study, a DNJ-producing bacterium, Bacillus subtilis MORI, was isolated from the traditional Korean fermented food Chungkookjang. In the present study, we report the identification of the DNJ biosynthetic genes in B. subtilis MORI 3K-85 strain, a DNJ-overproducing derivate of the B. subtilis MORI strain generated by γ-irradiation, xhe genomic DNA library of B. subtilis MORI 3K-85 was constructed in Escherichia coli, and clones showing α-glucosidase inhibition activity were selected. After DNA sequencing and a series of subcloning, we were able to identify a putative Operon which consists of gabT1, yktc1, and gutB1 genes predicted to encode putative transaminase, phosphatase, and oxidoreductase, respectively. When a recombinant plasmid containing this Operon sequence was transformed into an E. coli strain, the resulting transformant was able to produce DNJ into the culture medium. Our results indicate that the gabT1, yktc1, and gutB1 genes are involved in the DNJ biosynthetic pathway in B. subtilis MORI, suggesting the possibility of employing these genes to establish a large-scale microbial DNJ overproduction system through genetic engineering and process optimization.
Keyword
α-glucosidase inhibitor1-deoxynojirimycin (DNJ)Bacillus subtilis MORI 3K-85gene cloninggenomic DNA library screening
ISSN
1225-8873
Publisher
Microbiological Society Korea
DOI
http://dx.doi.org/10.1007/s12275-011-1238-3
Type
Article
Appears in Collections:
Division of Bio Technology Innovation > SME Support Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.