Estrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of phosphatidic acid phosphatase, LIPIN1,and inhibits hepatic insulin signaling

Cited 56 time in scopus
Metadata Downloads
Title
Estrogen-related receptor γ (ERRγ) is a novel transcriptional regulator of phosphatidic acid phosphatase, LIPIN1,and inhibits hepatic insulin signaling
Author(s)
D K Kim; J R Kim; M Koh; Y D Kim; J M Lee; D Chanda; S B Park; J J Min; Chul Ho Lee; T S Park; H S Choi
Bibliographic Citation
Journal of Biological Chemistry, vol. 286, no. 44, pp. 38035-38042
Publication Year
2011
Abstract
LIPINs have been reported to perform important roles in the regulation of intracellular lipid levels. Their mutations induce lipodystrophy, myoglobinuria, and inflammatory disorders. Recently, the phosphatidic acid phosphatase function of LIPINs has been associated with the perturbation of hepatic insulin receptor signaling via the diacylglycerol-mediated stimulation of PKCε activity. Here, we report that nuclear estrogen-related receptor (ERR) γ is a novel transcriptional regulator of LIPIN1. Overexpression of ERRγ significantly increased LIPIN1 expression in primary hepatocytes, whereas the abolition of ERRγ gene expression attenuated the expression of LIPIN1. Deletion and mutation analyses of the LIPIN1 promoter showed that ERRε exerts its effect on the transcriptional regulation of LIPIN1 via ERRE1 of the LIPIN1 promoter, as confirmed by ChIP assay. We also determined that the gene transcription of LIPIN1 by ERRγ is controlled by the competition between PGC-1α and small heterodimer partner. Additionally, ERRγ leads to the induction of hepatic LIPIN1 expression and diacylglycerol production in vivo. Finally, an inverse agonist of ERRγ, GSK5182, restores the impaired insulin signaling induced by LIPIN1-mediated PKCε activation. Our findings indicate that the selective control of ERRγ transcriptional activity by its specific inverse agonist could provide a novel therapeutic approach to the amelioration of impaired hepatic insulin signaling induced by LIPIN1-mediated PKCε activation.
ISSN
0021-9258
Publisher
Amer Soc Biochemistry Molecular Biology Inc
DOI
http://dx.doi.org/10.1074/jbc.M111.250613
Type
Article
Appears in Collections:
Ochang Branch Institute > Division of National Bio-Infrastructure > Laboratory Animal Resource & Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.