Functions of effective microorganisms in bioremediation of the contaminated harbor sediments

Cited 14 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorK I Ekpeghere-
dc.contributor.authorByung Hyuk Kim-
dc.contributor.authorH S Son-
dc.contributor.authorK S Whang-
dc.contributor.authorHee-Sik Kim-
dc.contributor.authorS C Koh-
dc.date.accessioned2017-04-19T09:28:47Z-
dc.date.available2017-04-19T09:28:47Z-
dc.date.issued2012-
dc.identifier.issn1093-4529-
dc.identifier.uri10.1080/10934529.2012.629578ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/10579-
dc.description.abstractThe aim of this study was to apply loess balls containing effective microorganisms (EM) to the remediation of contaminated harbor sediments, and to thereby elucidate the functions of EM in remediation. Changes in physicochemical, biochemical, and microbiological parameters were measured to monitor the remediation process at a laboratory scale. Treatment with high concentrations of EM stock culture and EM loess balls (4%), and a low concentration of EM loess balls (0.1%) that contained molasses (0.05%) contributed to more rapid removal of malodor. Acetic acid, propionic acid, valeric acid, caponic acid, and lactic acid were rapidly removed in the presence of molasses (0.05% w/w) as a carbon nutrient source, indicating enhanced EM activity by amendment with molasses. Fermentation of molasses by EM showed that more acetic acid was produced compared with other organic acids, and that the majority of organic acids were eventually converted to acetate via intermediate metabolites. Sediment bioremediation tests showed there was no significant difference in eubacterial density with the control and the treatments. However, the density of a Lactobacillus sp. in sediments treated with 0.1% and 4.0% EM loess balls was significantly higher than the control, which indicated the bioaugmentation effect of EM loess balls in the polluted sediments. Treatment with EM loess balls and an appropriate amount of molasses, or other nutrients, will facilitate the remediation of polluted marine sediments by malodor removal, via EM degradation or utilization of offensive organic acids. To our knowledge, this is the first study to remediate contaminated marine (harbor) sediments using EM loess balls and to understand EM function during the bioaugmentation process, both in terms of organic acid metabolism and the dynamics of the engineered microbial community.-
dc.publisherT&F (Taylor & Francis)-
dc.titleFunctions of effective microorganisms in bioremediation of the contaminated harbor sediments-
dc.title.alternativeFunctions of effective microorganisms in bioremediation of the contaminated harbor sediments-
dc.typeArticle-
dc.citation.titleJournal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering-
dc.citation.number1-
dc.citation.endPage53-
dc.citation.startPage44-
dc.citation.volume47-
dc.contributor.affiliatedAuthorByung Hyuk Kim-
dc.contributor.affiliatedAuthorHee-Sik Kim-
dc.contributor.alternativeNameEkpeghere-
dc.contributor.alternativeName김병혁-
dc.contributor.alternativeName손희성-
dc.contributor.alternativeName왕경숙-
dc.contributor.alternativeName김희식-
dc.contributor.alternativeName고성철-
dc.identifier.bibliographicCitationJournal of Environmental Science and Health Part A-Toxic/Hazardous Substances & Environmental Engineering, vol. 47, no. 1, pp. 44-53-
dc.identifier.doi10.1080/10934529.2012.629578-
dc.subject.keywordbioaugmentation-
dc.subject.keywordbioremediation-
dc.subject.keywordEffective microorganisms (EM)-
dc.subject.keywordmarine sediment-
dc.subject.keywordmolasses-
dc.subject.keywordorganic acids-
dc.subject.keywordreal-time quantitative PCR-
dc.subject.localbioaugmentation-
dc.subject.localbio-augmentation-
dc.subject.localBioaugmentation-
dc.subject.localbioaugmenation-
dc.subject.localbioremediation-
dc.subject.localBio-remediation-
dc.subject.localBioremediation-
dc.subject.localEffective microorganisms (EM)-
dc.subject.localmarine sediment-
dc.subject.localMarine sediment-
dc.subject.localmarine sediments-
dc.subject.localMolasses-
dc.subject.localmolasses-
dc.subject.localorganic acids-
dc.subject.localReal-time quantitative PCR-
dc.subject.localreal-time quantitative polymerase chain reaction-
dc.subject.localreal-time quantitative PCR-
dc.description.journalClassY-
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Cell Factory Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.