Rice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system

Cited 80 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorR Singh-
dc.contributor.authorMi Ok Lee-
dc.contributor.authorJ E Lee-
dc.contributor.authorJ Choi-
dc.contributor.authorJ H Park-
dc.contributor.authorE H Kim-
dc.contributor.authorRan Hee Yoo-
dc.contributor.authorJ I Cho-
dc.contributor.authorJ S Jeon-
dc.contributor.authorR Rakwal-
dc.contributor.authorG K Agrawal-
dc.contributor.authorJae Sun Moon-
dc.contributor.authorN S Jwa-
dc.date.accessioned2017-04-19T09:33:43Z-
dc.date.available2017-04-19T09:33:43Z-
dc.date.issued2012-
dc.identifier.issn0032-0889-
dc.identifier.uri10.1104/pp.112.200071ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/10931-
dc.description.abstractMitogen-activated protein kinase (MAPK) cascades support the flow of extracellular signals to intracellular target molecules and ultimately drive a diverse array of physiological functions in cells, tissues, and organisms by interacting with other proteins. Yet, our knowledge of the global physical MAPK interactome in plants remains largely fragmented. Here, we utilized the yeast twohybrid system and coimmunoprecipitation, pull-down, bimolecular fluorescence complementation, subcellular localization, and kinase assay experiments in the model crop rice (Oryza sativa) to systematically map what is to our knowledge the first plant MAPK-interacting proteins. We identified 80 nonredundant interacting protein pairs (74 nonredundant interactors) for rice MAPKs and elucidated the novel proteome-wide network of MAPK interactors. The established interactome contains four membrane-associated proteins, seven MAP2Ks (for MAPK kinase), four MAPKs, and 59 putative substrates, including 18 transcription factors. Several interactors were also validated by experimental approaches (in vivo and in vitro) and literature survey. Our results highlight the importance of OsMPK1, an ortholog of tobacco (Nicotiana benthamiana) salicyclic acid-induced protein kinase and Arabidopsis (Arabidopsis thaliana) AtMPK6, among the rice MAPKs, as it alone interacts with 41 unique proteins (51.2% of the mapped MAPK interaction network). Additionally, Gene Ontology classification of interacting proteins into 34 functional categories suggested MAPK participation in diverse physiological functions. Together, the results obtained essentially enhance our knowledge of the MAPK-interacting protein network and provide a valuable research resource for developing a nearly complete map of the rice MAPK interactome.-
dc.publisherAmer Soc Plant Biologists-
dc.titleRice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system-
dc.title.alternativeRice mitogen-activated protein kinase interactome analysis using the yeast two-hybrid system-
dc.typeArticle-
dc.citation.titlePlant Physiology-
dc.citation.number1-
dc.citation.endPage487-
dc.citation.startPage477-
dc.citation.volume160-
dc.contributor.affiliatedAuthorMi Ok Lee-
dc.contributor.affiliatedAuthorRan Hee Yoo-
dc.contributor.affiliatedAuthorJae Sun Moon-
dc.contributor.alternativeNameSingh-
dc.contributor.alternativeName이미옥-
dc.contributor.alternativeName이재은-
dc.contributor.alternativeName최지현-
dc.contributor.alternativeName박지훈-
dc.contributor.alternativeName김은혜-
dc.contributor.alternativeName유란희-
dc.contributor.alternativeName조정일-
dc.contributor.alternativeName전종성-
dc.contributor.alternativeNameRakwal-
dc.contributor.alternativeNameAgrawal-
dc.contributor.alternativeName문제선-
dc.contributor.alternativeName좌남수-
dc.identifier.bibliographicCitationPlant Physiology, vol. 160, no. 1, pp. 477-487-
dc.identifier.doi10.1104/pp.112.200071-
dc.description.journalClassY-
Appears in Collections:
Division of Research on National Challenges > Stem Cell Convergenece Research Center > 1. Journal Articles
Division of Research on National Challenges > Plant Systems Engineering Research > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.