DC Field | Value | Language |
---|---|---|
dc.contributor.author | J Kim | - |
dc.contributor.author | Y H Shin | - |
dc.contributor.author | S H Yun | - |
dc.contributor.author | D S Choi | - |
dc.contributor.author | J H Nam | - |
dc.contributor.author | S R Kim | - |
dc.contributor.author | S K Moon | - |
dc.contributor.author | Bong Hyun Chung | - |
dc.contributor.author | J H Lee | - |
dc.contributor.author | J H Kim | - |
dc.contributor.author | K Y Kim | - |
dc.contributor.author | K M Kim | - |
dc.contributor.author | J H Lim | - |
dc.date.accessioned | 2017-04-19T09:33:56Z | - |
dc.date.available | 2017-04-19T09:33:56Z | - |
dc.date.issued | 2012 | - |
dc.identifier.issn | 0002-7863 | - |
dc.identifier.uri | 10.1021/ja3073808 | ko |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/10955 | - |
dc.description.abstract | The ability of dip-pen nanolithography (DPN) to generate nano- or microarrays of soft or hard materials (e.g., small molecules, DNA, proteins, nanoparticles, sols, and polymers) in a direct-write manner has been widely demonstrated. The transporting of large-sized ink materials such as bacteria, however, remains a significant challenge with this technique. The size limitation of the water meniscus formed between the DPN tip and the solid surface becomes a bottleneck in such diffusion-based molecular transport experiments. Herein, we report a straightforward "stamp-on" DPN method that uses a nanostructured poly(2-methyl-2-oxazoline) hydrogel-coated tip and carrier agents to generate patterns of micrometer-sized Escherichia coli JM 109 bacterial cells. We demonstrate that this approach enables the deposition of a single bacterial cell array on a solid surface or arrays of layers of multiple cells by modulating the viscosity of the "ink" solution. Fluorescence microscopy images indicated that the deposited bacterial cells were kept alive on Luria-Bertani-agar layered solid surfaces after DPN patterning. | - |
dc.publisher | Amer Chem Soc | - |
dc.title | Direct-write patterning of bacterial cells by dip-pen nanolithography | - |
dc.title.alternative | Direct-write patterning of bacterial cells by dip-pen nanolithography | - |
dc.type | Article | - |
dc.citation.title | Journal of American Chemical Society | - |
dc.citation.number | 40 | - |
dc.citation.endPage | 16503 | - |
dc.citation.startPage | 16500 | - |
dc.citation.volume | 134 | - |
dc.contributor.affiliatedAuthor | Bong Hyun Chung | - |
dc.contributor.alternativeName | 김지은 | - |
dc.contributor.alternativeName | 신영훈 | - |
dc.contributor.alternativeName | 윤성훈 | - |
dc.contributor.alternativeName | 최동식 | - |
dc.contributor.alternativeName | 남지혜 | - |
dc.contributor.alternativeName | 김성룡 | - |
dc.contributor.alternativeName | 문성권 | - |
dc.contributor.alternativeName | 정봉현 | - |
dc.contributor.alternativeName | 이재혁 | - |
dc.contributor.alternativeName | 김재호 | - |
dc.contributor.alternativeName | 김기영 | - |
dc.contributor.alternativeName | 김경민 | - |
dc.contributor.alternativeName | 임정혁 | - |
dc.identifier.bibliographicCitation | Journal of American Chemical Society, vol. 134, no. 40, pp. 16500-16503 | - |
dc.identifier.doi | 10.1021/ja3073808 | - |
dc.description.journalClass | Y | - |
There are no files associated with this item.
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.