Small heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mitochondrial uncoupling protein 2

Cited 24 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorC S Yang-
dc.contributor.authorJ M Yuk-
dc.contributor.authorJ J Kim-
dc.contributor.authorJung Hwan Hwang-
dc.contributor.authorChul Ho Lee-
dc.contributor.authorJ M Kim-
dc.contributor.authorG T Oh-
dc.contributor.authorH S Choi-
dc.contributor.authorE K Jo-
dc.date.accessioned2017-04-19T09:40:12Z-
dc.date.available2017-04-19T09:40:12Z-
dc.date.issued2013-
dc.identifier.issn1932-6203-
dc.identifier.uri10.1371/journal.pone.0063435ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/11332-
dc.description.abstractThe orphan nuclear receptor, small heterodimer partner (SHP), appears to play a negative regulatory role in innate immune signaling. Emerging evidence warrants further study on the therapeutic targeting of SHP to suppress excessive and deleterious inflammation. Here we show that fenofibrate, which targets SHP, is required for inhibiting systemic inflammation via mitochondrial uncoupling protein 2 (UCP2). In vivo administration of fenofibrate ameliorated systemic inflammatory responses and increased survival upon experimental sepsis through SHP. An abundance of SHP was observed in mice fed fenofibrate and in cultured macrophages through LKB1-dependent activation of the AMP-activated protein kinase pathway. Fenofibrate significantly blocked endotoxin-triggered inflammatory signaling responses via SHP, but not via peroxisome proliferator-activated receptor (PPAR)-α. In addition to the known mechanism by which SHP modulates innate signaling, we identify a new role of fenofibrate-induced SHP on UCP2 induction, which is required for the suppression of inflammatory responses through modulation of mitochondrial ROS production. These data strongly suggest that the SHP-inducing drug fenofibrate paves the way for novel therapies for systemic inflammation by targeting SHP.-
dc.publisherPublic Library of Science-
dc.titleSmall heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mitochondrial uncoupling protein 2-
dc.title.alternativeSmall heterodimer partner-targeting therapy inhibits systemic inflammatory responses through mitochondrial uncoupling protein 2-
dc.typeArticle-
dc.citation.titlePLoS One-
dc.citation.number5-
dc.citation.endPagee63435-
dc.citation.startPagee63435-
dc.citation.volume8-
dc.contributor.affiliatedAuthorJung Hwan Hwang-
dc.contributor.affiliatedAuthorChul Ho Lee-
dc.contributor.alternativeName양철수-
dc.contributor.alternativeName육재민-
dc.contributor.alternativeName김좌진-
dc.contributor.alternativeName황정환-
dc.contributor.alternativeName이철호-
dc.contributor.alternativeName김진만-
dc.contributor.alternativeName오구택-
dc.contributor.alternativeName최흥식-
dc.contributor.alternativeName조은경-
dc.identifier.bibliographicCitationPLoS One, vol. 8, no. 5, pp. e63435-e63435-
dc.identifier.doi10.1371/journal.pone.0063435-
dc.description.journalClassY-
Appears in Collections:
Ochang Branch Institute > Division of National Bio-Infrastructure > Laboratory Animal Resource & Research Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.