Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice

Cited 25 time in scopus
Metadata Downloads
Title
Xanthomonas oryzae pv. oryzae type III effector XopN targets OsVOZ2 and a putative thiamine synthase as a virulence factor in rice
Author(s)
H Cheong; C Y Kim; J S Jeon; B M Lee; Jae Sun Moon; I Hwang
Bibliographic Citation
PLoS One, vol. 8, no. 9, pp. e73346-e73346
Publication Year
2013
Abstract
Xanthomonas oryzae pv. oryzae (Xoo) is spread systemically through the xylem tissue and causes bacterial blight in rice. We evaluated the roles of Xanthomonas outer proteins (Xop) in the Xoo strain KXO85 in a Japonica-type rice cultivar, Dongjin. Five xop gene knockout mutants (xopQKXO85, xopXKXO85, xopP1KXO85, xopP2KXO85, and xopNKXO85) were generated by EZ-Tn5 mutagenesis, and their virulence was assessed in 3-month-old rice leaves. Among these mutants, the xopNKXO85 mutant appeared to be less virulent than the wild-type KXO85; however, the difference was not statistically significant. In contrast, the xopNKXO85 mutant exhibited significantly less virulence in flag leaves after flowering than the wild-type KXO85. These observations indicate that the roles of Xop in Xoo virulence are dependent on leaf stage. We chose the xopN gene for further characterization because the xopNKXO85 mutant showed the greatest influence on virulence. We confirmed that XopNKXO85 is translocated into rice cells, and its gene expression is positively regulated by HrpX. Two rice proteins, OsVOZ2 and a putative thiamine synthase (OsXNP), were identified as targets of XopNKXO85 by yeast two-hybrid screening. Interactions between XopNKXO85 and OsVOZ2 and OsXNP were further confirmed in planta by bimolecular fluorescence complementation and in vivo pull-down assays. To investigate the roles of OsVOZ2 in interactions between rice and Xoo, we evaluated the virulence of the wild-type KXO85 and xopNKXO85 mutant in the OsVOZ2 mutant line PFG_3A-07565 of Dongjin. The wild-type KXO85 and xopNKXO85 mutant were significantly less virulent in the mutant rice line. These results indicate that XopNKXO85 and OsVOZ2 play important roles both individually and together for Xoo virulence in rice.
ISSN
1932-6203
Publisher
Public Library of Science
DOI
http://dx.doi.org/10.1371/journal.pone.0073346
Type
Article
Appears in Collections:
Division of Biomaterials Research > Plant Systems Engineering Research > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.