Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress

Cited 107 time in scopus
Metadata Downloads
Title
Mitochondrial dysfunction induces formation of lipid droplets as a generalized response to stress
Author(s)
Seon-Jin Lee; J Zhang; A M K Choi; H P Kim
Bibliographic Citation
Oxidative Medicine and Cellular Longevity, vol. 2013, pp. 327167-327167
Publication Year
2013
Abstract
Lipid droplet (LD) formation is a hallmark of cellular stress. Cells attempt to combat noxious stimuli by switching their metabolism from oxidative phosphorylation to glycolysis, sparing resources in LDs for generating cellular reducing power and for anabolic biosynthesis. Membrane phospholipids are also a source of LDs. To elucidate the formation of LDs, we exposed mice to hyperoxia, hypoxia, myocardial ischemia, and sepsis induced by cecal ligation and puncture (CLP). All the above-mentioned stressors enhanced the formation of LDs, as assessed by transmission electron microscopy, with severe mitochondrial swelling. Disruption of mitochondria by depleting mitochondrial DNA (ρ0 cells) significantly augmented the formation of LDs, causing transcriptional activation of fatty acid biosynthesis and metabolic reprogramming to glycolysis. Heme oxygenase (HO)-1 counteracts CLP-mediated septic shock in mouse models. In HO-1-deficient mice, LD formation was not observed upon CLP, but a concomitant decrease in "LD-decorating proteins" was observed, implying a link between LDs and cytoprotective activity. Collectively, LD biogenesis during stress can trigger adaptive LD formation, which is dependent on mitochondrial integrity and HO-1 activity; this may be a cellular survival strategy, apportioning energy-generating substrates to cellular defense.
ISSN
1942-0900
Publisher
Hindawi Ltd
DOI
http://dx.doi.org/10.1155/2013/327167
Type
Article
Appears in Collections:
Division of Research on National Challenges > Environmental diseases research center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.