Generation of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts general hospital miniature pig

Cited 29 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorD J Kwon-
dc.contributor.authorH Jeon-
dc.contributor.authorK B Oh-
dc.contributor.authorS A Ock-
dc.contributor.authorG S Im-
dc.contributor.authorS S Lee-
dc.contributor.authorS K Im-
dc.contributor.authorJeong Woong Lee-
dc.contributor.authorS J Oh-
dc.contributor.authorJ K Park-
dc.contributor.authorS Hwang-
dc.date.accessioned2017-04-19T09:49:19Z-
dc.date.available2017-04-19T09:49:19Z-
dc.date.issued2013-
dc.identifier.issn2314-6133-
dc.identifier.uri10.1155/2013/140639ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/11745-
dc.description.abstractThe generation and application of porcine induced pluripotent stem cells (iPSCs) may enable the testing for safety and efficacy of therapy in the field of human regenerative medicine. Here, the generation of iPSCs from the Massachusetts General Hospital miniature pig (MGH minipig) established for organ transplantation studies is reported. Fibroblasts were isolated from the skin of the ear of a 10-day-old MGH minipig and transduced with a cocktail of six human factors: POU5F1, NANOG, SOX2, C-MYC, KLF4, and LIN28. Two distinct types of iPSCs were generated that were positive for alkaline phosphatase activity, as well as the classical pluripotency markers: Oct4, Nanog, Sox2, and the surface marker Ssea-1. Only one of two porcine iPSC lines differentiated into three germ layers both in vitro and in vivo. Western blot analysis showed that the porcine iPSCs were dependent on LIF or BMP-4 to sustain self-renewal and pluripotency. In conclusion, the results showed that human pluripotent factors could reprogram porcine ear fibroblasts into the pluripotent state. These cells may provide a useful source of cells that could be used for the treatment of degenerative and genetic diseases and agricultural research and application.-
dc.publisherHindawi Ltd-
dc.titleGeneration of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts general hospital miniature pig-
dc.title.alternativeGeneration of leukemia inhibitory factor-dependent induced pluripotent stem cells from the Massachusetts general hospital miniature pig-
dc.typeArticle-
dc.citation.titleBiomed Research International-
dc.citation.number0-
dc.citation.endPage140639-
dc.citation.startPage140639-
dc.citation.volume2013-
dc.contributor.affiliatedAuthorJeong Woong Lee-
dc.contributor.alternativeName권대진-
dc.contributor.alternativeName전혜레나-
dc.contributor.alternativeName오건봉-
dc.contributor.alternativeName옥선아-
dc.contributor.alternativeName임기선-
dc.contributor.alternativeName이성수-
dc.contributor.alternativeName임석기-
dc.contributor.alternativeName이정웅-
dc.contributor.alternativeName오성종-
dc.contributor.alternativeName박진기-
dc.contributor.alternativeName황성수-
dc.identifier.bibliographicCitationBiomed Research International, vol. 2013, pp. 140639-140639-
dc.identifier.doi10.1155/2013/140639-
dc.description.journalClassY-
Appears in Collections:
Division of A.I. & Biomedical Research > Biotherapeutics Translational Research Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.