DC Field | Value | Language |
---|---|---|
dc.contributor.author | H J Kim | - |
dc.contributor.author | J M Hong | - |
dc.contributor.author | H J Yoon | - |
dc.contributor.author | Byoung-Mog Kwon | - |
dc.contributor.author | J Y Choi | - |
dc.contributor.author | I K Lee | - |
dc.contributor.author | S Y Kim | - |
dc.date.accessioned | 2017-04-19T09:50:55Z | - |
dc.date.available | 2017-04-19T09:50:55Z | - |
dc.date.issued | 2014 | - |
dc.identifier.issn | 0014-2999 | - |
dc.identifier.uri | 10.1016/j.ejphar.2013.10.027 | ko |
dc.identifier.uri | https://oak.kribb.re.kr/handle/201005/11827 | - |
dc.description.abstract | Osteoclasts are polykaryons that have the unique capacity to degrade bone. Modulation of osteoclast formation and function is a promising strategy for the treatment of bone-destructive diseases. Here, we report that obovatol, a natural compound isolated from Magnolia obovata, inhibits receptor activator of nuclear factor kappa B (NF-κB) ligand (RANKL)-induced osteoclast differentiation in vitro and inflammatory bone loss in vivo. We found that obovatol strongly inhibited osteoclast formation from bone marrow-derived macrophages in a dose-dependent manner without cytotoxicity. Obovatol significantly suppressed RANKL-induced activation of NF-κB, c-Jun-N-terminal kinase, and extracellular signal-regulated kinase signaling pathways. Obovatol also inhibited RANKL-induced expression of the genes c-Fos and nuclear factor of activated T cells c1, which are transcription factors important for osteoclastogenesis. In addition to osteoclast differentiation, obovatol blocked cytoskeletal organization and abrogated the bone resorbing activity of mature osteoclast. Obovatol also accelerated osteoclast apoptosis through the induction of caspase-3 activation. Consistent with its in vitro anti-resorptive effect, obovatol prevented bone loss induced by lipopolysaccharide in vivo. Together, our data suggest that obovatol may be a useful therapeutic agent for the treatment of pathological bone disorders characterized by excessive osteoclastic bone resorption. | - |
dc.publisher | Elsevier | - |
dc.title | Inhibitory effects of obovatol on osteoclast differentiation and bone resorption | - |
dc.title.alternative | Inhibitory effects of obovatol on osteoclast differentiation and bone resorption | - |
dc.type | Article | - |
dc.citation.title | European Journal of Pharmacology | - |
dc.citation.number | 1 | - |
dc.citation.endPage | 480 | - |
dc.citation.startPage | 473 | - |
dc.citation.volume | 723 | - |
dc.contributor.affiliatedAuthor | Byoung-Mog Kwon | - |
dc.contributor.alternativeName | 김현주 | - |
dc.contributor.alternativeName | 홍정민 | - |
dc.contributor.alternativeName | 윤혜진 | - |
dc.contributor.alternativeName | 권병목 | - |
dc.contributor.alternativeName | 최제용 | - |
dc.contributor.alternativeName | 이인규 | - |
dc.contributor.alternativeName | 김신윤 | - |
dc.identifier.bibliographicCitation | European Journal of Pharmacology, vol. 723, no. 1, pp. 473-480 | - |
dc.identifier.doi | 10.1016/j.ejphar.2013.10.027 | - |
dc.subject.keyword | Apoptosis | - |
dc.subject.keyword | Bone resorption | - |
dc.subject.keyword | Cytoskeletal organization | - |
dc.subject.keyword | Obovatol | - |
dc.subject.keyword | Osteoclast | - |
dc.subject.keyword | RANKL | - |
dc.subject.local | apoptosis | - |
dc.subject.local | Apoptosis | - |
dc.subject.local | Bone resorption | - |
dc.subject.local | Cytoskeletal organization | - |
dc.subject.local | obovatol | - |
dc.subject.local | Obovatol | - |
dc.subject.local | OSTEOCLAST | - |
dc.subject.local | Osteoclasts | - |
dc.subject.local | Osteoclast | - |
dc.subject.local | osteoclast | - |
dc.subject.local | RANKL | - |
dc.description.journalClass | Y | - |
There are no files associated with this item.
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.