Targeting of magnolin on ERKs inhibits Ras/ERKs/RSK2-signaling-mediated neoplastic cell transformation

Cited 27 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorC J Lee-
dc.contributor.authorH S Lee-
dc.contributor.authorHyung Won Ryu-
dc.contributor.authorM H Lee-
dc.contributor.authorJ Y Lee-
dc.contributor.authorY Li-
dc.contributor.authorZ Dong-
dc.contributor.authorHyeong Kyu Lee-
dc.contributor.authorSei-Ryang Oh-
dc.contributor.authorY Y Cho-
dc.date.accessioned2017-04-19T09:51:14Z-
dc.date.available2017-04-19T09:51:14Z-
dc.date.issued2014-
dc.identifier.issn0143-3334-
dc.identifier.uri10.1093/carcin/bgt306ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/11852-
dc.description.abstractMitogen-activated protein kinases play a key role in cell proliferation, cell cycle progression and cell transformation, and activated Ras/extracellular signal-regulated kinases (ERKs)/ribosomal S6 kinase 2 (RSK2) signaling pathways have been widely identified in many solid tumors. In this study, we found that magnolin, a compound found in the Magnolia species, directly targeted and inhibited ERK1 and ERK2 kinase activities with IC50 values of 87 and 16.5 nM by competing with adenosine triphosphate in an active pocket. Further, we demonstrated that magnolin inhibited epidermal growth factor (EGF)-induced p90RSKs phosphorylation at Thr359/Ser363, but not ERKs phosphorylation at Thr202/Tyr204, and this resulted in inhibition of cell proliferation by suppression of the G1/S cell cycle transition. Additionally, p38 kinases, Jun N-terminal kinases and Akts were not involved in the magnolin-mediated inhibitory signaling. Magnolin targeting of ERK1 and 2 activities suppressed the phosphorylation of RSK2 and downstream target proteins including ATF1 and c-Jun and AP-1, a dimer of Jun/Fos, and the transactivation activities of ATF1 and AP-1. Notably, ERKs inhibition by magnolin suppressed EGF-induced anchorage-independent cell transformation and colony growth of RasG12V-harboring A549 human lung cancer cells and NIH3T3 cells stably expressing RasG12V in soft agar. Taken together, these results demonstrated that magnolin might be a naturally occurring chemoprevention and therapeutic agent capable of inhibiting cell proliferation and transformation by targeting ERK1 and ERK2.-
dc.publisherOxford Univ Press-
dc.titleTargeting of magnolin on ERKs inhibits Ras/ERKs/RSK2-signaling-mediated neoplastic cell transformation-
dc.title.alternativeTargeting of magnolin on ERKs inhibits Ras/ERKs/RSK2-signaling-mediated neoplastic cell transformation-
dc.typeArticle-
dc.citation.titleCarcinogenesis-
dc.citation.number2-
dc.citation.endPage441-
dc.citation.startPage432-
dc.citation.volume35-
dc.contributor.affiliatedAuthorHyung Won Ryu-
dc.contributor.affiliatedAuthorHyeong Kyu Lee-
dc.contributor.affiliatedAuthorSei-Ryang Oh-
dc.contributor.alternativeName이철중-
dc.contributor.alternativeName이혜숙-
dc.contributor.alternativeName류형원-
dc.contributor.alternativeName이미현-
dc.contributor.alternativeName이지영-
dc.contributor.alternativeNameLi-
dc.contributor.alternativeNameDong-
dc.contributor.alternativeName이형규-
dc.contributor.alternativeName오세량-
dc.contributor.alternativeName조용연-
dc.identifier.bibliographicCitationCarcinogenesis, vol. 35, no. 2, pp. 432-441-
dc.identifier.doi10.1093/carcin/bgt306-
dc.description.journalClassY-
Appears in Collections:
Ochang Branch Institute > Natural Product Research Center > 1. Journal Articles
Ochang Branch Institute > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.