Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency

Cited 11 time in scopus
Metadata Downloads
Title
Comparative receptor tyrosine kinase profiling identifies a novel role for AXL in human stem cell pluripotency
Author(s)
Mi Young SonBinna Seol; Y M Han; Yee Sook Cho
Bibliographic Citation
Human Molecular Genetics, vol. 23, no. 7, pp. 1802-1816
Publication Year
2014
Abstract
The extensive molecular characterization of human pluripotent stem cells (hPSCs), human embryonic stem cells (hESCs) and human-induced pluripotent stem cells (hiPSCs) is required before they can be applied in the future for personalized medicine and drug discovery. Despite the efforts that have been made with kinome analyses, we still lack in-depth insights into the molecular signatures of receptor tyrosine kinases (RTKs) that are related to pluripotency. Here, we present the first detailed and distinct repertoire of RTK characteristic for hPSC pluripotency by determining both the expression and phosphorylation profiles of RTKs in hESCs and hiPSCs using reverse transcriptase-polymerase chain reaction with degenerate primers that target conserved tyrosine kinase domains and phospho-RTK array, respectively. Among the RTKs tested, the up-regulation of EPHA1, ERBB2, FGFR4 and VEGFR2 and the down-regulation of AXL, EPHA4, PDGFRB and TYRO3 in terms of both their expression and phosphorylation levels were predominantly related to the maintenance of hPSC pluripotency. Notably, the specific inhibition of AXL was significantly advantageous in maintaining undifferentiated hESCs and hiPSCs and for the overall efficiency and kinetics of hiPSC generation. Additionally, a global phosphoproteomic analysis showed that ∼30% of the proteins (293 of 970 phosphoproteins) showed differential phosphorylation upon AXL inhibition in undifferentiated hPSCs, revealing the potential contribution of AXL-mediated phosphorylation dynamics to pluripotency-related signaling networks. Our findings provide a novel molecular signature of AXL in pluripotency control that will complement existing pluripotency-kinome networks.
ISSN
0964-6906
Publisher
Oxford Univ Press
DOI
http://dx.doi.org/10.1093/hmg/ddt571
Type
Article
Appears in Collections:
Division of Research on National Challenges > Stem Cell Convergenece Research Center > 1. Journal Articles
Division of Biomedical Research > Immunotherapy Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.