16α,17α-epoxypregnenolone-20-oxime prevent LPS-induced NO production and iNOS expression in BV-2 microglial cells by inhibiting JNK phosphorylation
Cited 5 time in
- Title
- 16α,17α-epoxypregnenolone-20-oxime prevent LPS-induced NO production and iNOS expression in BV-2 microglial cells by inhibiting JNK phosphorylation
- Author(s)
- H N Sun; M H Jin; B Han; L Feng; Y H Han; G N Shen; Y Z Yu; C H Jin; Z X Lian; D S Lee; Sun-Uk Kim; W Z Ge; Y D Cui
- Bibliographic Citation
- Biological & Pharmaceutical Bulletin, vol. 37, no. 7, pp. 1096-1102
- Publication Year
- 2014
- Abstract
- The free radical nitric oxide (NO), a main member of neuroinflammatory cytokine and a gaseous molecule produced by activated microglia, has many physiological functions, including neuroinflammation. In the present study, we evaluated the effects of serial 16-dehydropregnenolone-3-acetate derivatives on lipopolysaccharide (LPS)-induced NO production and inducible nitric oxide synthase (iNOS) expression in BV-2 microglial cells. Among the six derivatives tested, the increases in NO production and iNOS expression observed in BV-2 microglial cells after LPS stimulation were significantly inhibited by treatment with 16α, 17α-epoxypregnenolone-20-oxime. Moreover, the inhibitory effect of 16α,17α-epoxypregnenolone-20-oxime on NO production was similar to that of S-methylisothiourea sulfate (SMT), an iNOS inhibitor. Further studies showed that 16α,17α-epoxypregnenolone-20-oxime inhibited c-Jun N-terminal kinase (JNK) phosphorylation but not inhibitor kappa B (IκB)-α degradation. Our data in LPS-stimulated microglia cells suggest that 16α,17α-epoxypregnenolone-20-oxime might be a candidate therapeutic for treatment of NO induced neuroinflammation and could be a novel iNOS inhibitor.
- Keyword
- MicrogliaNeuroinflammationNitric oxide
- ISSN
- 0918-6158
- Publisher
- Pharmaceutical Soc Japan
- DOI
- http://dx.doi.org/10.1248/bpb.b13-00706
- Type
- Article
- Appears in Collections:
- Ochang Branch Institute > Division of National Bio-Infrastructure > Futuristic Animal Resource & Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.