Microalgae biomass quantification by digital image processing and RGB color analysis

Cited 45 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorM S Sarrafzadeh-
dc.contributor.authorHyun Joon La-
dc.contributor.authorJae Yon Lee-
dc.contributor.authorDae Hyun Cho-
dc.contributor.authorSang Yoon Shin-
dc.contributor.authorWoo-Jin Kim-
dc.contributor.authorHee-Mock Oh-
dc.date.accessioned2017-04-19T10:01:08Z-
dc.date.available2017-04-19T10:01:08Z-
dc.date.issued2015-
dc.identifier.issn0921-8971-
dc.identifier.uri10.1007/s10811-014-0285-7ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/12420-
dc.description.abstractDigital image processing based on a red-green-blue (RGB) color analysis was applied to measure the cell concentration of three microalgae: Chlorella vulgaris, Botryococcus braunii, and Ettlia sp. The experiments were performed by using diluted and concentrated cultures of these microalgae to prepare different concentrations of dry cell weight (DCW). A charge-coupled device (CCD) camera was used to image the microalgae samples in a dark chamber homogenously illuminated from the bottom. The method showed to be a simple yet efficient technique for microalgae biomass estimation with an effective measurement range up to 3 g DCW L-1. Especially, the blue color value linearly decreased with DCW in this dynamic range of measurement in all the tested microalgae. The general correlation based on the conversion of RGB values to gray tones by application of a luminescence algorithm also showed similar patterns. The blue color value predicted the biomass concentrations of C. vulgaris, B. braunii, and Ettlia sp. with average errors of 13, 16, and 8 %, respectively, which were much lower than those of the gray tones conversion. Thus, the method presented in this study can be a base for the development of a more general method for microalgae biomass measurement.-
dc.publisherSpringer-
dc.titleMicroalgae biomass quantification by digital image processing and RGB color analysis-
dc.title.alternativeMicroalgae biomass quantification by digital image processing and RGB color analysis-
dc.typeArticle-
dc.citation.titleJournal of Applied Phycology-
dc.citation.number0-
dc.citation.endPage209-
dc.citation.startPage205-
dc.citation.volume27-
dc.contributor.affiliatedAuthorHyun Joon La-
dc.contributor.affiliatedAuthorJae Yon Lee-
dc.contributor.affiliatedAuthorDae Hyun Cho-
dc.contributor.affiliatedAuthorSang Yoon Shin-
dc.contributor.affiliatedAuthorWoo-Jin Kim-
dc.contributor.affiliatedAuthorHee-Mock Oh-
dc.contributor.alternativeNameSarrafzadeh-
dc.contributor.alternativeName나현준-
dc.contributor.alternativeName이재연-
dc.contributor.alternativeName조대현-
dc.contributor.alternativeName신상윤-
dc.contributor.alternativeName김우진-
dc.contributor.alternativeName오희목-
dc.identifier.bibliographicCitationJournal of Applied Phycology, vol. 27, pp. 205-209-
dc.identifier.doi10.1007/s10811-014-0285-7-
dc.subject.keywordBiofuels-
dc.subject.keywordChlorophyll-
dc.subject.keywordMicrobial biomass estimation-
dc.subject.keywordPhotobioreactor-
dc.subject.keywordRGB color model-
dc.subject.localbiofuel-
dc.subject.localBiofuel-
dc.subject.localBiofuels-
dc.subject.localChlorophyll-
dc.subject.localchlorophyll-
dc.subject.localMicrobial biomass estimation-
dc.subject.localPhotobioreactor-
dc.subject.localphotobioreactor-
dc.subject.localRGB color model-
dc.description.journalClassY-
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Cell Factory Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.