Recurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma

Cited 9 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorB Y Kim-
dc.contributor.authorD W Choi-
dc.contributor.authorS R Woo-
dc.contributor.authorE R Park-
dc.contributor.authorJ G Lee-
dc.contributor.authorS H Kim-
dc.contributor.authorI Koo-
dc.contributor.authorS H Park-
dc.contributor.authorC J Han-
dc.contributor.authorS B Kim-
dc.contributor.authorYoung Il Yeom-
dc.contributor.authorSuk Jin Yang-
dc.contributor.authorA Yu-
dc.contributor.authorJ W Lee-
dc.contributor.authorJ J Jang-
dc.contributor.authorM H Cho-
dc.contributor.authorW K Jeon-
dc.contributor.authorY N Park-
dc.contributor.authorK S Suh-
dc.contributor.authorK H Lee-
dc.date.accessioned2017-04-19T10:03:51Z-
dc.date.available2017-04-19T10:03:51Z-
dc.date.issued2015-
dc.identifier.issn1471-2164-
dc.identifier.uri10.1186/s12864-015-1472-xko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/12592-
dc.description.abstractBackground: Despite the recent identification of several prognostic gene signatures, the lack of common genes among experimental cohorts has posed a considerable challenge in uncovering the molecular basis underlying hepatocellular carcinoma (HCC) recurrence for application in clinical purposes. To overcome the limitations of individual gene-based analysis, we applied a pathway-based approach for analysis of HCC recurrence. Results: By implementing a permutation-based semi-supervised principal component analysis algorithm using the optimal principal component, we selected sixty-four pathways associated with hepatitis B virus (HBV)-positive HCC recurrence (p < 0.01), from our microarray dataset composed of 142 HBV-positive HCCs. In relation to the public HBV- and public hepatitis C virus (HCV)-positive HCC datasets, we detected 46 (71.9%) and 18 (28.1%) common recurrence-associated pathways, respectively. However, overlap of recurrence-associated genes between datasets was rare, further supporting the utility of the pathway-based approach for recurrence analysis between different HCC datasets. Non-supervised clustering of the 64 recurrence-associated pathways facilitated the classification of HCC patients into high- and low-risk subgroups, based on risk of recurrence (p < 0.0001). The pathways identified were additionally successfully applied to discriminate subgroups depending on recurrence risk within the public HCC datasets. Through multivariate analysis, these recurrence-associated pathways were identified as an independent prognostic factor (p < 0.0001) along with tumor number, tumor size and Edmondson's grade. Moreover, the pathway-based approach had a clinical advantage in terms of discriminating the high-risk subgroup (N = 12) among patients (N = 26) with small HCC (<3 cm). Conclusions: Using pathway-based analysis, we successfully identified the pathways involved in recurrence of HBV-positive HCC that may be effectively used as prognostic markers.-
dc.publisherSpringer-BMC-
dc.titleRecurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma-
dc.title.alternativeRecurrence-associated pathways in hepatitis B virus-positive hepatocellular carcinoma-
dc.typeArticle-
dc.citation.titleBMC Genomics-
dc.citation.number0-
dc.citation.endPage279-
dc.citation.startPage279-
dc.citation.volume16-
dc.contributor.affiliatedAuthorYoung Il Yeom-
dc.contributor.affiliatedAuthorSuk Jin Yang-
dc.contributor.alternativeName김부여-
dc.contributor.alternativeName최동욱-
dc.contributor.alternativeName우선랑-
dc.contributor.alternativeName박은란-
dc.contributor.alternativeName이제근-
dc.contributor.alternativeName김수현-
dc.contributor.alternativeName구임회-
dc.contributor.alternativeName박선후-
dc.contributor.alternativeName한철주-
dc.contributor.alternativeName김상범-
dc.contributor.alternativeName염영일-
dc.contributor.alternativeName양석진-
dc.contributor.alternativeName유아미-
dc.contributor.alternativeName이재원-
dc.contributor.alternativeName장자준-
dc.contributor.alternativeName조명행-
dc.contributor.alternativeName전원경-
dc.contributor.alternativeName박영년-
dc.contributor.alternativeName서경숙-
dc.contributor.alternativeName이기호-
dc.identifier.bibliographicCitationBMC Genomics, vol. 16, pp. 279-279-
dc.identifier.doi10.1186/s12864-015-1472-x-
dc.subject.keywordHepatocellular carcinoma-
dc.subject.keywordPrincipal component analysis-
dc.subject.keywordPrognosis-
dc.subject.keywordRecurrence-associated pathway-
dc.subject.keywordRisk-
dc.subject.keywordSmall tumor-
dc.subject.localHepatocellular carcinomas-
dc.subject.localHepatocellular carcinoma (HCC)-
dc.subject.localHepatocellular carcinoma-
dc.subject.localhepatocellular carcinoma (HCC)-
dc.subject.localhepatocellular carcinoma-
dc.subject.localprincipal component analysis (PCA)-
dc.subject.localPrincipal Component Analysis-
dc.subject.localPrincipal component analysis (PCA)-
dc.subject.localprincipal component analysis-
dc.subject.localprincipal components analysis-
dc.subject.localPrincipal component analysis-
dc.subject.localPrognosis-
dc.subject.localprognosis-
dc.subject.localRecurrence-associated pathway-
dc.subject.localRisk-
dc.subject.localSmall tumor-
dc.description.journalClassY-
Appears in Collections:
Division of Biomedical Research > Personalized Genomic Medicine Research Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.