Investigations of Some Liquid Matrixes for Analyte Quantification by MALDI

Cited 12 time in scopus
Metadata Downloads
Investigations of Some Liquid Matrixes for Analyte Quantification by MALDI
Jeong Hee Moon; K M Park; S H Ahn; S H Lee; M S Kim
Bibliographic Citation
Journal of American Society for Mass Spectrometry, vol. 26, no. 10, pp. 1657-1664
Publication Year
Sample inhomogeneity is one of the obstacles preventing the generation of reproducible mass spectra by MALDI and to their use for the purpose of analyte quantification. As a potential solution to this problem, we investigated MALDI with some liquid matrixes prepared by nonstoichiometric mixing of acids and bases. Out of 27 combinations of acids and bases, liquid matrixes could be produced from seven. When the overall spectral features were considered, two liquid matrixes using α-cyano-4-hydroxycinnamic acid as the acid and 3-aminoquinoline and N,N-diethylaniline as bases were the best choices. In our previous study of MALDI with solid matrixes, we found that three requirements had to be met for the generation of reproducible spectra and for analyte quantification: (1) controlling the temperature by fixing the total ion count, (2) plotting the analyte-to-matrix ion ratio versus the analyte concentration as the calibration curve, and (3) keeping the matrix suppression below a critical value. We found that the same requirements had to be met in MALDI with liquid matrixes as well. In particular, although the liquid matrixes tested here were homogeneous, they failed to display spot-to-spot spectral reproducibility unless the first requirement above was met. We also found that analyte-derived ions could not be produced efficiently by MALDI with the above liquid matrixes unless the analyte was sufficiently basic. In this sense, MALDI processes with solid and liquid matrixes should be regarded as complementary techniques rather than as competing ones.
3AQ/CHCALiquid matrixMALDIMALDI quantificationMALDI temperatureMatrix suppressionReproducible MALDI
Amer Soc Mass Spectr
Appears in Collections:
Division of Bio Technology Innovation > Core Research Facility & Analysis Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.