Essential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features

Cited 52 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorD Kopanja-
dc.contributor.authorA Pandey-
dc.contributor.authorM Kiefer-
dc.contributor.authorZ Wang-
dc.contributor.authorN Chandan-
dc.contributor.authorJ R Carr-
dc.contributor.authorR Franks-
dc.contributor.authorDae Yeul Yu-
dc.contributor.authorG Guzman-
dc.contributor.authorA Maker-
dc.contributor.authorP Raychaudhuri-
dc.date.accessioned2017-04-19T10:13:00Z-
dc.date.available2017-04-19T10:13:00Z-
dc.date.issued2015-
dc.identifier.issn01688278-
dc.identifier.uri10.1016/j.jhep.2015.03.023ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/12892-
dc.description.abstractBackground & Aims: Overexpression of FoxM1 correlates with poor prognosis in hepatocellular carcinoma (HCC). Moreover, the Ras-signaling pathway is found to be ubiquitously activated in HCC through epigenetic silencing of the Ras-regulators. We investigated the roles of FoxM1 in Ras-driven HCC, and on HCC cells with stem-like features. Methods:We employed a transgenic mouse model that expresses the oncogenic Ras in the liver. That strain was crossed with a strain that harbor floxed alleles of FoxM1 and the MxCre gene that allows conditional deletion of FoxM1. FoxM1 alleles were deleted after development of HCC, and the effects on the tumors were analyzed. Also, FoxM1 siRNA was used in human HCC cell lines to determine its role in the survival of the HCC cells with stem cell features. Results: Ras-driven tumors overexpress FoxM1. Deletion of FoxM1 inhibits HCC progression. There was increased accumulation of reactive oxygen species (ROS) in the FoxM1 deleted HCC cells. Moreover, FoxM1 deletion caused a disproportionate loss of the CD44+ and EpCAM+ HCC cells in the tumors. We show that FoxM1 directly activates expression of CD44 in human HCC cells. Moreover, the human HCC cells with stem cell features are addicted to FoxM1 for ROS-regulation and survival. Conclusion: Our results provide genetic evidence for an essential role of FoxM1 in the progression of Ras-driven HCC. In addition, FoxM1 is required for the expression of CD44 in HCC cells. Moreover, FoxM1 plays a critical role in the survival of the HCC cells with stem cell features by regulating ROS.-
dc.publisherElsevier-
dc.titleEssential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features-
dc.title.alternativeEssential roles of FoxM1 in Ras-induced liver cancer progression and in cancer cells with stem cell features-
dc.typeArticle-
dc.citation.titleJournal of Hepatology-
dc.citation.number2-
dc.citation.endPage436-
dc.citation.startPage429-
dc.citation.volume63-
dc.contributor.alternativeNameKopanja-
dc.contributor.alternativeNamePandey-
dc.contributor.alternativeNameKiefer-
dc.contributor.alternativeNameWang-
dc.contributor.alternativeNameChandan-
dc.contributor.alternativeNameCarr-
dc.contributor.alternativeNameFranks-
dc.contributor.alternativeName유대열-
dc.contributor.alternativeNameGuzman-
dc.contributor.alternativeNameMaker-
dc.contributor.alternativeNameRaychaudhuri-
dc.identifier.bibliographicCitationJournal of Hepatology, vol. 63, no. 2, pp. 429-436-
dc.identifier.doi10.1016/j.jhep.2015.03.023-
dc.subject.keywordFoxM1-
dc.subject.keywordLiver cancer cells with stem cell features-
dc.subject.keywordRas-driven liver cancer-
dc.subject.localFoxM1-
dc.subject.localFOXM1-
dc.subject.localLiver cancer cells with stem cell features-
dc.subject.localRas-driven liver cancer-
dc.description.journalClassY-
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.