Crystal structure of fully oxidized human thioredoxin

Cited 10 time in scopus
Metadata Downloads
Title
Crystal structure of fully oxidized human thioredoxin
Author(s)
Jungwon Hwang; L T Nguyen; Y H Jeon; C Y Lee; Myung Hee Kim
Bibliographic Citation
Biochemical and Biophysical Research Communications, vol. 467, no. 2, pp. 218-222
Publication Year
2015
Abstract
In addition to the active cysteines located at positions 32 and 35 in humans, mammalian cytosolic thioredoxin (TRX) possesses additional conserved cysteine residues at positions 62, 69, and 73. These non-canonical cysteine residues, that are distinct from prokaryotic TRX and also not found in mammalian mitochondrial TRX, have been implicated in biological functions regulating signal transduction pathways via their post-translational modifications. Here, we describe for the first time the structure of a fully oxidized TRX. The structure shows a non-active Cys62-Cys69 disulfide bond in addition to the active Cys32-Cys35 disulfide. The non-active disulfide switches the α3-helix of TRX, composed of residues Cys62 to Glu70, to a bulging loop and dramatically changes the environment of the TRX residues involved in the interaction with its reductase and other cellular substrates. This structural modification may have implications for a number of potential functions of TRX including the regulation of redox-dependent signaling pathways.
Keyword
OxidoreductaseRedoxThioredoxinX-ray structure
ISSN
0006-291X
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.bbrc.2015.10.003
Type
Article
Appears in Collections:
Division of Biomedical Research > Metabolic Regulation Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.