Cited 8 time in
- Title
- Production of phenylacetyl-homoserine lactone analogs by artificial biosynthetic pathway in Escherichia coli = 쿠마노일 호모세린락톤 화합물을 대장균에서 생산
- Author(s)
- Sun Young Kang; Jae Kyung Lee; Jae-Hyuk Jang; B Y Hwang; Young-Soo Hong
- Bibliographic Citation
- Microbial Cell Factories, vol. 14, pp. 191-191
- Publication Year
- 2015
- Abstract
- Background: Quorum sensing (QS) networks are more commonly known as acyl homoserine lactone (HSL) networks. Recently, p-coumaroyl-HSL has been found in a photosynthetic bacterium. p-coumaroyl-HSL is derived from a lignin monomer, p-coumaric acid, rather than a fatty acyl group. The p-coumaroyl-HSL may serve an ecological role in diverse QS pathways between p-coumaroyl-HSL producing bacteria and specific plants. Interference with QS has been regarded as a novel way to control bacterial infections. Heterologous production of the QS molecule, p-coumaroyl-HSL, could provide a sustainable and controlled means for its large-scale production, in contrast to the restricted feedback regulation and extremely low productivity of natural producers. Results: We developed an artificial biosynthetic process for phenylacetyl-homoserine lactone analogs, including cinnamoyl-HSL, p-coumaroyl-HSL, caffeoyl-HSL, and feruloyl-HSL, using a bioconversion method via E. coli (CB1) in the co-expression of the codon-optimized LuxI-type synthase (RpaI) and p-coumaroyl-CoA ligase (4CL2nt). In addition to this, we show the de novo production of p-coumaroyl-HSL in heterologous host E. coli (DN1) and tyrosine overproducing E. coli (DN2), containing the rpaI gene in addition to p-coumaroyl-CoA biosynthetic genes. The yields for p-coumaroyl-HSL reached 93.4 ± 0.6 and 142.5 ± 1.0 mg/L in the S-adenosyl-l-methionine and l-methionine feeding culture in the DN2 strain, respectively. Conclusions: This is the first report of a de novo biosynthesis in a heterologous host yielding a QS molecule, p-coumaroyl-HSL from a glucose medium using a single vector system combining p-coumaroyl-CoA biosynthetic genes and the LuxI-type synthase gene.
- Keyword
- Artificial biosynthesisHomoserine lactone (HSL)p-coumaroyl-HSLPhenylacetyl-HSL
- ISSN
- 1475-2859
- Publisher
- Springer-BMC
- Full Text Link
- http://dx.doi.org/10.1186/s12934-015-0379-1
- Type
- Article
- Appears in Collections:
- Ochang Branch Institute > Chemical Biology Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.