Anomaly intrusion detection based on hyper-ellipsoid in the kernel feature space

Cited 5 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorH Lee-
dc.contributor.authorD Moon-
dc.contributor.authorI Kim-
dc.contributor.authorHo Seok Jung-
dc.contributor.authorD Park-
dc.date.accessioned2017-04-19T10:15:47Z-
dc.date.available2017-04-19T10:15:47Z-
dc.date.issued2015-
dc.identifier.issn1976-7277-
dc.identifier.uri10.3837/tiis.2015.03.019ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/13048-
dc.description.abstractThe Support Vector Data Description (SVDD) has achieved great success in anomaly detection, directly finding the optimal ball with a minimal radius and center, which contains most of the target data. The SVDD has some limited classification capability, because the hyper-sphere, even in feature space, can express only a limited region of the target class. This paper presents an anomaly detection algorithm for mitigating the limitations of the conventional SVDD by finding the minimum volume enclosing ellipsoid in the feature space. To evaluate the performance of the proposed approach, we tested it with intrusion detection applications. Experimental results show the prominence of the proposed approach for anomaly detection compared with the standard SVDD.-
dc.publisherKSII-Kor Soc Internet Information-
dc.titleAnomaly intrusion detection based on hyper-ellipsoid in the kernel feature space-
dc.title.alternativeAnomaly intrusion detection based on hyper-ellipsoid in the kernel feature space-
dc.typeArticle-
dc.citation.titleKSII Transactions on Internet and Information Systems-
dc.citation.number3-
dc.citation.endPage1192-
dc.citation.startPage1173-
dc.citation.volume9-
dc.contributor.affiliatedAuthorHo Seok Jung-
dc.contributor.alternativeName이한성-
dc.contributor.alternativeName문대성-
dc.contributor.alternativeName김익균-
dc.contributor.alternativeName정호석-
dc.contributor.alternativeName박대희-
dc.identifier.bibliographicCitationKSII Transactions on Internet and Information Systems, vol. 9, no. 3, pp. 1173-1192-
dc.identifier.doi10.3837/tiis.2015.03.019-
dc.subject.keywordAnomaly detection-
dc.subject.keywordIntrusion detection-
dc.subject.keywordKernel principal component analysis-
dc.subject.keywordMinimum enclosing ellipsoid-
dc.subject.localAnomaly Detection-
dc.subject.localAnomaly detection-
dc.subject.localIntrusion detection-
dc.subject.localKernel principal component analysis-
dc.subject.localMinimum enclosing ellipsoid-
dc.description.journalClassY-
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.