Structure of the thermophilic L-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability

Cited 30 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorJ M Choi-
dc.contributor.authorY J Lee-
dc.contributor.authorT P Cao-
dc.contributor.authorS M Shin-
dc.contributor.authorM K Park-
dc.contributor.authorH S Lee-
dc.contributor.authorE di Luccio-
dc.contributor.authorS B Kim-
dc.contributor.authorS J Lee-
dc.contributor.authorSang Jun Lee-
dc.contributor.authorS H Lee-
dc.contributor.authorD W Lee-
dc.date.accessioned2017-04-19T10:18:59Z-
dc.date.available2017-04-19T10:18:59Z-
dc.date.issued2016-
dc.identifier.issn0096-9621-
dc.identifier.uri10.1016/j.abb.2016.02.033ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/13194-
dc.description.abstractThermophilic l-arabinose isomerase (AI), which catalyzes the interconversion of l-arabinose and l-ribulose, can be used to produce d-tagatose, a sugar substitute, from d-galactose. Unlike mesophilic AIs, thermophilic AIs are highly dependent on divalent metal ions for their catalytic activity and thermostability at elevated temperatures. However, the molecular basis underlying the substrate preferences and metal requirements of multimeric AIs remains unclear. Here we report the first crystal structure of the apo and holo forms of thermophilic Geobacillus kaustophilus AI (GKAI) in hexamer form. The structures, including those of GKAI in complex with l-arabitol, and biochemical analyses revealed not only how the substrate-binding site of GKAI is formed through displacement of residues at the intersubunit interface when it is bound to Mn2+, but also revealed the water-mediated H-bonding networks that contribute to the structural integrity of GKAI during catalysis. These observations suggest metal-mediated isomerization reactions brought about by intersubunit interactions at elevated temperatures are responsible for the distinct active site features that promote the substrate specificity and thermostability of thermophilic AIs.-
dc.publisherElsevier-
dc.titleStructure of the thermophilic L-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability-
dc.title.alternativeStructure of the thermophilic L-Arabinose isomerase from Geobacillus kaustophilus reveals metal-mediated intersubunit interactions for activity and thermostability-
dc.typeArticle-
dc.citation.titleArchives of Biochemistry and Biophysics-
dc.citation.number0-
dc.citation.endPage62-
dc.citation.startPage51-
dc.citation.volume596-
dc.contributor.affiliatedAuthorSang Jun Lee-
dc.contributor.alternativeName최진명-
dc.contributor.alternativeName이용직-
dc.contributor.alternativeNameCao-
dc.contributor.alternativeName신선미-
dc.contributor.alternativeName박민규-
dc.contributor.alternativeName이한승-
dc.contributor.alternativeNameLuccio-
dc.contributor.alternativeName김성보-
dc.contributor.alternativeName이상재-
dc.contributor.alternativeName이상준-
dc.contributor.alternativeName이성행-
dc.contributor.alternativeName이동우-
dc.identifier.bibliographicCitationArchives of Biochemistry and Biophysics, vol. 596, pp. 51-62-
dc.identifier.doi10.1016/j.abb.2016.02.033-
dc.subject.keywordCrystal structure-
dc.subject.keywordIntersubunit interaction-
dc.subject.keywordl-arabinose isomerase-
dc.subject.keywordSubstrate specificity-
dc.subject.keywordThermostability-
dc.subject.localcrystal structure-
dc.subject.localCrystal structure-
dc.subject.localIntersubunit interaction-
dc.subject.localL-arabinose isomerase-
dc.subject.locall-arabinose isomerase-
dc.subject.locall-Arabinose isomerase-
dc.subject.localSubstrate specificity-
dc.subject.localsubstrate specificity-
dc.subject.localThermostability-
dc.subject.localthermostability-
dc.description.journalClassY-
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.