Generation and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease

Cited 33 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorMi Young Son-
dc.contributor.authorMi Ok Lee-
dc.contributor.authorHyejin Jeon-
dc.contributor.authorBinna Seol-
dc.contributor.authorJ H Kim-
dc.contributor.authorJ S Chang-
dc.contributor.authorYee Sook Cho-
dc.date.accessioned2017-04-19T10:22:17Z-
dc.date.available2017-04-19T10:22:17Z-
dc.date.issued2016-
dc.identifier.issnI000-0028-
dc.identifier.uri10.1016/j.cmet.2016.04.010ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/13270-
dc.description.abstractAutoimmune diseases (AIDs), a heterogeneous group of immune-mediated disorders, are a major and growing health problem. Although AIDs are currently treated primarily with anti-inflammatory and immunosuppressive drugs, the use of stem cell transplantation in patients with AIDs is becoming increasingly common. However, stem cell transplantation therapy has limitations, including a shortage of available stem cells and immune rejection of cells from nonautologous sources. Induced pluripotent stem cell (iPSC) technology, which allows the generation of patient-specific pluripotent stem cells, could offer an alternative source for clinical applications of stem cell therapies in AID patients. We used nonintegrating oriP/EBNA-1-based episomal vectors to reprogram dermal fibroblasts from patients with AIDs such as ankylosing spondylitis (AS), Sjogren's syndrome (SS) and systemic lupus erythematosus (SLE). The pluripotency and multilineage differentiation capacity of each patient-specific iPSC line was validated. The safety of these iPSCs for use in stem cell transplantation is indicated by the fact that all AID-specific iPSCs are integrated transgene free. Finally, all AID-specific iPSCs derived in this study could be differentiated into cells of hematopoietic and mesenchymal lineages in vitro as shown by flow cytometric analysis and induction of terminal differentiation potential. Our results demonstrate the successful generation of integration-free iPSCs from patients with AS, SS and SLE. These findings support the possibility of using iPSC technology in autologous and allogeneic cell replacement therapy for various AIDs, including AS, SS and SLE.-
dc.publisherSpringer-Nature Pub Group-
dc.titleGeneration and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease-
dc.title.alternativeGeneration and characterization of integration-free induced pluripotent stem cells from patients with autoimmune disease-
dc.typeArticle-
dc.citation.titleExperimental and Molecular Medicine-
dc.citation.number0-
dc.citation.endPagee232-
dc.citation.startPagee232-
dc.citation.volume48-
dc.contributor.affiliatedAuthorMi Young Son-
dc.contributor.affiliatedAuthorMi Ok Lee-
dc.contributor.affiliatedAuthorHyejin Jeon-
dc.contributor.affiliatedAuthorBinna Seol-
dc.contributor.affiliatedAuthorYee Sook Cho-
dc.contributor.alternativeName손미영-
dc.contributor.alternativeName이미옥-
dc.contributor.alternativeName전혜진-
dc.contributor.alternativeName설빛나-
dc.contributor.alternativeName김정화-
dc.contributor.alternativeName장재숙-
dc.contributor.alternativeName조이숙-
dc.identifier.bibliographicCitationExperimental and Molecular Medicine, vol. 48, pp. e232-e232-
dc.identifier.doi10.1038/emm.2016.27-
dc.description.journalClassY-
Appears in Collections:
Division of Research on National Challenges > Stem Cell Convergenece Research Center > 1. Journal Articles
Division of A.I. & Biomedical Research > Immunotherapy Research Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.