Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases

Cited 48 time in scopus
Metadata Downloads
Title
Graphene oxide induces apoptotic cell death in endothelial cells by activating autophagy via calcium-dependent phosphorylation of c-Jun N-terminal kinases
Author(s)
Mi-Hee Lim; I C Jeung; Jin Young JeongSung Jin Yoon; Sang Hyun Lee; Jongjin Park; Yu-Seon Kang; Hansu Lee; Young-Jun ParkHee Gu LeeSeon-Jin LeeBaek Soo Han; N W Song; Sang Chul Lee; Jang Seong Kim; Kwang-Hee Bae; Jeong Ki Min
Bibliographic Citation
Acta Biomaterialia, vol. 46, pp. 191-203
Publication Year
2016
Abstract
Despite the rapid expansion of the biomedical applications of graphene oxide (GO), safety issues related to GO, particularly with regard to its effects on vascular endothelial cells (ECs), have been poorly evaluated. To explore possible GO-mediated vasculature cytotoxicity and determine lateral GO size relevance, we constructed four types of GO: micrometer-sized GO (MGO; 1089.9±135.3nm), submicrometer-sized GO (SGO; 390.2±51.4nm), nanometer-sized GO (NGO; 65.5±16.3nm), and graphene quantum dots (GQDs). All types but GQD showed a significant decrease in cellular viability in a dose-dependent manner. Notably, SGO or NGO, but not MGO, potently induced apoptosis while causing no detectable necrosis. Subsequently, SGO or NGO markedly induced autophagy through a process dependent on the c-Jun N-terminal kinase (JNK)-mediated phosphorylation of B-cell lymphoma 2 (Bcl-2), leading to the dissociation of Beclin-1 from the Beclin-1-Bcl-2 complex. Autophagy suppression attenuated the SGO- or NGO-induced apoptotic cell death of ECs, suggesting that SGO- or NGO-induced cytotoxicity is associated with autophagy. Moreover, SGO or NGO significantly induced increased intracellular calcium ion (Ca2+) levels. Intracellular Ca2+ chelation with BAPTA-AM significantly attenuated microtubule-associated protein 1A/1B-light chain 3-II accumulation and JNK phosphorylation, resulting in reduced autophagy. Furthermore, we found that SGO or NGO induced Ca2+ release from the endoplasmic reticulum through the PLC β3/IP3/IP3R signaling axis. These results elucidate the mechanism underlying the size-dependent cytotoxicity of GOs in the vasculature and may facilitate the development of a safer biomedical application of GOs. Statement of Significance Graphene oxide (GO) have received considerable attention with respect to their utilization in biomedical applications. However, GO-related safety issues concerning human vasculature are very limited. In this manuscript, we report for the first time the differential size-related biological effects of GOs on endothelial cells (ECs). Notably, Subnanometer- and nanometersized GOs induce apoptotic death in ECs via autophagy activation. We propose a molecular mechanism for the GO-induced autophagic cell death through the PLCβ3/IP3/Ca2+/JNK signaling axis. Our findings could be provide a better understanding of the GO sizedependent cytotoxicity in vasculature and facilitate the future development of safer biomedical applications of GOs.
Keyword
AutophagyCalcium ionCytotoxicityEndothelial cellGraphene oxide
ISSN
1742-7061
Publisher
Elsevier
DOI
http://dx.doi.org/10.1016/j.actbio.2016.09.018
Type
Article
Appears in Collections:
Division of Research on National Challenges > Environmental diseases research center > 1. Journal Articles
Division of Biomedical Research > Biotherapeutics Translational Research Center > 1. Journal Articles
Division of Biomedical Research > Immunotherapy Research Center > 1. Journal Articles
Division of Research on National Challenges > Biodefense Research Center > 1. Journal Articles
Division of Biomedical Research > Metabolic Regulation Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.