Crucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells

Cited 52 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorD K Kim-
dc.contributor.authorE J Seo-
dc.contributor.authorE J Choi-
dc.contributor.authorS I Lee-
dc.contributor.authorY W Kwon-
dc.contributor.authorI H Jang-
dc.contributor.authorS C Kim-
dc.contributor.authorK H Kim-
dc.contributor.authorD S Suh-
dc.contributor.authorS J Kim-
dc.contributor.authorSang Chul Lee-
dc.contributor.authorJ H Kim-
dc.date.accessioned2017-04-19T10:28:36Z-
dc.date.available2017-04-19T10:28:36Z-
dc.date.issued2016-
dc.identifier.issnI000-0028-
dc.identifier.uri10.1038/emm.2016.73ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/13482-
dc.description.abstractCancer stem cells are a subpopulation of cancer cells characterized by self-renewal ability, tumorigenesis and drug resistance. The aim of this study was to investigate the role of HMGA1, a chromatin remodeling factor abundantly expressed in many different cancers, in the regulation of cancer stem cells in ovarian cancer. Spheroid-forming cancer stem cells were isolated from A2780, SKOV3 and PA1 ovarian cancer cells by three-dimensional spheroid culture. Elevated expression of HMGA1 was observed in spheroid cells along with increased expression of stemness-related genes, such as SOX2, KLF4, ALDH, ABCB1 and ABCG2. Furthermore, spheroid A2780 cells, compared with adherent cells, showed higher resistance to chemotherapeutic agents such as paclitaxel and doxorubicin. HMGA1 knockdown in spheroid cells reduced the proliferative advantage and spheroid-forming efficiency of the cells and the expression of stemness-related genes. HMGA1 overexpression in adherent A2780 cells increased cancer stem cell properties, including proliferation, spheroid-forming efficiency and the expression of stemness-related genes. In addition, HMGA1 regulated ABCG2 promoter activity through HMGA1-binding sites. Knockdown of HMGA1 in spheroid cells reduced resistance to chemotherapeutic agents, whereas the overexpression of HMGA1 in adherent ovarian cancer cells increased resistance to chemotherapeutic agents in vitro. Furthermore, HMGA1-overexpressing A2780 cells showed a significant survival advantage after chemotherapeutic agent treatment in a xenograft tumorigenicity assay. Together, our results provide novel insights regarding the critical role of HMGA1 in the regulation of the cancer stem cell characteristics of ovarian cancer cells, thus suggesting that HMGA1 may be an important target in the development of therapeutics for ovarian cancer patients.-
dc.publisherSpringer-Nature Pub Group-
dc.titleCrucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells-
dc.title.alternativeCrucial role of HMGA1 in the self-renewal and drug resistance of ovarian cancer stem cells-
dc.typeArticle-
dc.citation.titleExperimental and Molecular Medicine-
dc.citation.number0-
dc.citation.endPagee255-
dc.citation.startPagee255-
dc.citation.volume48-
dc.contributor.affiliatedAuthorSang Chul Lee-
dc.contributor.alternativeName김대경-
dc.contributor.alternativeName서은진-
dc.contributor.alternativeName최은-
dc.contributor.alternativeName이수인-
dc.contributor.alternativeName권양우-
dc.contributor.alternativeName장일호-
dc.contributor.alternativeName김승철-
dc.contributor.alternativeName김기형-
dc.contributor.alternativeName서동수-
dc.contributor.alternativeName김성장-
dc.contributor.alternativeName이상철-
dc.contributor.alternativeName김재호-
dc.identifier.bibliographicCitationExperimental and Molecular Medicine, vol. 48, pp. e255-e255-
dc.identifier.doi10.1038/emm.2016.73-
dc.description.journalClassY-
Appears in Collections:
Division of A.I. & Biomedical Research > Metabolic Regulation Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.