Improved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography

Cited 19 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorC M Lim-
dc.contributor.authorI K Lee-
dc.contributor.authorKi Joong Lee-
dc.contributor.authorYoung Kyoung Oh-
dc.contributor.authorYong Beom Shin-
dc.contributor.authorW J Cho-
dc.date.accessioned2017-08-29-
dc.date.available2017-08-29-
dc.date.issued2017-
dc.identifier.issn1468-6996-
dc.identifier.uri10.1080/14686996.2016.1253409ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/17032-
dc.description.abstractThis work describes the construction of a sensitive, stable, and label-free sensor based on a dual-gate field-effect transistor (DG FET), in which uniformly distributed and size-controlled silicon nanowire (SiNW) arrays by nanoimprint lithography act as conductor channels. Compared to previous DG FETs with a planar-type silicon channel layer, the constructed SiNW DG FETs exhibited superior electrical properties including a higher capacitive-coupling ratio of 18.0 and a lower off-state leakage current under high-temperature stress. In addition, while the conventional planar single-gate (SG) FET- and planar DG FET-based pH sensors showed the sensitivities of 56.7mV/pH and 439.3mV/pH, respectively, the SiNW DG FET-based pH sensors showed not only a higher sensitivity of 984.1mV/pH, but also a lower drift rate of 0.8% for pH-sensitivity. This demonstrates that the SiNW DG FETs simultaneously achieve high sensitivity and stability, with significant potential for future biosensing applications.-
dc.publisherT&F (Taylor & Francis)-
dc.titleImproved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography-
dc.title.alternativeImproved sensing characteristics of dual-gate transistor sensor using silicon nanowire arrays defined by nanoimprint lithography-
dc.typeArticle-
dc.citation.titleScience and Technology of Advanced Materials-
dc.citation.number1-
dc.citation.endPage25-
dc.citation.startPage17-
dc.citation.volume18-
dc.contributor.affiliatedAuthorKi Joong Lee-
dc.contributor.affiliatedAuthorYoung Kyoung Oh-
dc.contributor.affiliatedAuthorYong Beom Shin-
dc.contributor.alternativeName임철민-
dc.contributor.alternativeName이인규-
dc.contributor.alternativeName이기중-
dc.contributor.alternativeName오영경-
dc.contributor.alternativeName신용범-
dc.contributor.alternativeName조원주-
dc.identifier.bibliographicCitationScience and Technology of Advanced Materials, vol. 18, no. 1, pp. 17-25-
dc.identifier.doi10.1080/14686996.2016.1253409-
dc.subject.keywordcapacitive coupling-
dc.subject.keywordDual-gate field-effect transistor-
dc.subject.keywordion-sensitive field-effect transistor-
dc.subject.keywordnanoimprint lithography-
dc.subject.keywordpH sensor-
dc.subject.keywordsilicon nanowire-
dc.subject.localcapacitive coupling-
dc.subject.localDual-gate field-effect transistor-
dc.subject.localion-sensitive field-effect transistor-
dc.subject.localIon-sensitive field-effect transistor-
dc.subject.localNanoimprint Lithography-
dc.subject.localnanoImprint lithography-
dc.subject.localnanoimprint lithography-
dc.subject.localNanoimprint lithography-
dc.subject.localNanoimprint lithography (NIL)-
dc.subject.localpH sensor-
dc.subject.localsilicon nanowire-
dc.description.journalClassY-
Appears in Collections:
Division of Research on National Challenges > Bionanotechnology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.