The bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain

Cited 18 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorY C Wu-
dc.contributor.authorKyu-Sun Lee-
dc.contributor.authorY Song-
dc.contributor.authorS Gehrke-
dc.contributor.authorB Lu-
dc.date.accessioned2017-08-29-
dc.date.available2017-08-29-
dc.date.issued2017-
dc.identifier.issn1553-7390-
dc.identifier.uri10.1371/journal.pgen.1006785ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/17140-
dc.description.abstractNotch (N) signaling is central to the self-renewal of neural stem cells (NSCs) and other tissue stem cells. Its deregulation compromises tissue homeostasis and contributes to tumorigenesis and other diseases. How N regulates stem cell behavior in health and disease is not well understood. Here we show that N regulates bantam (ban) microRNA to impact cell growth, a process key to NSC maintenance and particularly relied upon by tumor-forming cancer stem cells. Notch signaling directly regulates ban expression at the transcriptional level, and ban in turn feedback regulates N activity through negative regulation of the Notch inhibitor Numb. This feedback regulatory mechanism helps maintain the robustness of N signaling activity and NSC fate. Moreover, we show that a Numb-Myc axis mediates the effects of ban on nucleolar and cellular growth independently or downstream of N. Our results highlight intricate transcriptional as well as translational control mechanisms and feedback regulation in the N signaling network, with important implications for NSC biology and cancer biology-
dc.publisherPublic Library of Science-
dc.titleThe bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain-
dc.title.alternativeThe bantam microRNA acts through Numb to exert cell growth control and feedback regulation of Notch in tumor-forming stem cells in the Drosophila brain-
dc.typeArticle-
dc.citation.titlePLoS Genetics-
dc.citation.number5-
dc.citation.endPagee1006785-
dc.citation.startPagee1006785-
dc.citation.volume13-
dc.contributor.affiliatedAuthorKyu-Sun Lee-
dc.contributor.alternativeNameWu-
dc.contributor.alternativeName이규선-
dc.contributor.alternativeNameSong-
dc.contributor.alternativeNameGehrke-
dc.contributor.alternativeNameLu-
dc.identifier.bibliographicCitationPLoS Genetics, vol. 13, no. 5, pp. e1006785-e1006785-
dc.identifier.doi10.1371/journal.pgen.1006785-
dc.description.journalClassY-
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.