Cited 51 time in
- Title
- Light intensity as major factor to maximize biomass and lipid productivity of Ettlia sp. in CO2-controlled photoautotrophic chemostat
- Author(s)
- Seong-Hyun Seo; Ji-San Ha; C Yoo; A Srivastava; Chi-Yong Ahn; Dae-Hyun Cho; Hyun-Joon La; M S Han; Hee-Mock Oh
- Bibliographic Citation
- Bioresource Technology, vol. 244, pp. 621-628
- Publication Year
- 2017
- Abstract
- The optimal culture conditions are critical factors for high microalgal biomass and lipid productivity. To optimize the photoautotrophic culture conditions, combination of the pH (regulated by CO2 supply), dilution rate, and light intensity was systematically investigated for Ettlia sp. YC001 cultivation in a chemostat during 143 days. The biomass productivity increased with the increase in dilution rate and light intensity, but decreased with increasing pH. The average lipid content was 19.8% and statistically non-variable among the tested conditions. The highest biomass and lipid productivities were 1.48 g L -1 d -1 and 291.4 mg L -1 d -1 with a pH of 6.5, dilution rate of 0.78 d -1, and light intensity of 1500 μmol photons m -2 s -1. With a sufficient supply of CO2 and nutrients, the light intensity was the main determinant of the photosynthetic rate. Therefore, the surface-to-volume ratio of a photobioreactor should enable efficient light distribution to enhance microalgal growth.
- Keyword
- Biomass productivityChemostatCO2 supplyDilution rateEttlia sp.Light intensitypH
- ISSN
- 0960-8524
- Publisher
- Elsevier
- Full Text Link
- http://dx.doi.org/10.1016/j.biortech.2017.08.020
- Type
- Article
- Appears in Collections:
- Synthetic Biology and Bioengineering Research Institute > Cell Factory Research Center > 1. Journal Articles
- Files in This Item:
Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.