Surfactant-free vapor-phase synthesis of single-crystalline gold nanoplates for optimally bioactive surfaces

Cited 25 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorY Yoo-
dc.contributor.authorH Lee-
dc.contributor.authorH Lee-
dc.contributor.authorM Lee-
dc.contributor.authorS Yang-
dc.contributor.authorAhreum Hwang-
dc.contributor.authorS I Kim-
dc.contributor.authorJ Y Park-
dc.contributor.authorJ Choo-
dc.contributor.authorTaejoon Kang-
dc.contributor.authorB Kim-
dc.date.accessioned2018-01-11T02:53:17Z-
dc.date.available2018-01-11T02:53:17Z-
dc.date.issued2017-
dc.identifier.issn0897-4756-
dc.identifier.uri10.1021/acs.chemmater.7b02932ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/17525-
dc.description.abstractWe report the surfactant-free vapor-phase synthesis of atomically flat and ultraclean gold nanoplates. These gold nanoplates can offer optimally functional surfaces through the immobilization of molecules without unspecific adsorption and defect, which could be quite valuable for diverse applications including biomedical sensing, plasmonics, molecular electronics, electrochemistry, etc. The ultraflat, ultraclean, and single-crystalline nanostructures, including gold nanoparticles (NPs), gold nanowires (NWs), gold nanobelts, and gold nanoplates, are stereoepitaxially grown on a substrate with a specific orientation. Moreover, the nanostructures can be selectively synthesized by experimental conditions and locations of the substrate. The geometry and orientation of the nanostructures show strong correlations, suggesting a growth process of seed NPs → NWs → nanobelts → nanoplates. This synthetic process can be explained by the mechanism in which the height-to-width ratio of gold nanostructures is determined by the ratio of the atom-supply rate by direct impingement to the atom-supply rate by surface diffusion. We finely tuned the shapes (NPs, NWs, nanobelts, or nanoplates) and sizes (from several micrometers to hundreds of micrometers) of the gold nanostructures by adjusting the deposition flux. Crucially, the surfactant-free and atomically flat gold nanoplates could be optimally bioactive surfaces. We substantially decreased the nonspecific binding of avidin by immobilizing the biotinylated molecules onto the gold nanoplates. Compared with thermally deposited gold films, the single-crystalline gold nanoplates showed a 100 times lower detection limit in the recognition of the biotin-avidin interaction. We anticipate that the gold nanoplates will bring us one-step closer to the realization of ideal biomolecular sensors because the several bioactive gold surfaces can be prepared by immobilizing various biological molecules onto the gold nanoplates.-
dc.publisherAmer Chem Soc-
dc.titleSurfactant-free vapor-phase synthesis of single-crystalline gold nanoplates for optimally bioactive surfaces-
dc.title.alternativeSurfactant-free vapor-phase synthesis of single-crystalline gold nanoplates for optimally bioactive surfaces-
dc.typeArticle-
dc.citation.titleChemistry of Materials-
dc.citation.number20-
dc.citation.endPage8756-
dc.citation.startPage8747-
dc.citation.volume29-
dc.contributor.affiliatedAuthorAhreum Hwang-
dc.contributor.affiliatedAuthorTaejoon Kang-
dc.contributor.alternativeName유영동-
dc.contributor.alternativeName이효반-
dc.contributor.alternativeName이현수-
dc.contributor.alternativeName이미연-
dc.contributor.alternativeName양시영-
dc.contributor.alternativeName황아름-
dc.contributor.alternativeName김시인-
dc.contributor.alternativeName박정영-
dc.contributor.alternativeName추재범-
dc.contributor.alternativeName강태준-
dc.contributor.alternativeName김봉수-
dc.identifier.bibliographicCitationChemistry of Materials, vol. 29, no. 20, pp. 8747-8756-
dc.identifier.doi10.1021/acs.chemmater.7b02932-
dc.description.journalClassY-
Appears in Collections:
Division of Research on National Challenges > Bionanotechnology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.