Species- and sex-specific distribution of antennal olfactory sensilla in two tortricid moths, Epiphyas postvittana and Planotortrix octo

Cited 13 time in scopus
Metadata Downloads
Title
Species- and sex-specific distribution of antennal olfactory sensilla in two tortricid moths, Epiphyas postvittana and Planotortrix octo
Author(s)
G H Roh; K C Park; Hyun Woo Oh; C G Park
Bibliographic Citation
Micron, vol. 106, pp. 7-20
Publication Year
2018
Abstract
We investigated the morphology and distribution of antennal sensilla in males and females of two tortricid moths, Epiphyas postvittana and Planotortrix octo, by scanning electron microscopy. The number and overall length of flagellomeres were significantly greater in females than in males in both species. The antennae of each species bearing six morphological types of sensilla (trichodea, basiconica, coeloconica, auricillica, chaetica, and styloconica), with different numbers and distributions along the antennae. Among these sensilla, four types (trichodea, basiconica, coeloconica, and auricillica) displayed multi-porous cuticular surfaces, indicating that their primary sensory function is olfactory. Each of these four types of sensilla could be further classified into subtypes according to their size, shape, and surface structure. Both E. postvittana and P. octo exhibited sexual dimorphism of the profiles of antennal olfactory sensilla. Trichoid sensilla were the most abundant type in both species. Subtype I trichoid sensilla were male-specific in both species, indicating that they are responsible for the perception of conspecific female sex pheromone. By contrast, subtype II trichoid sensilla were more abundant in female antennae in both species, suggesting that some subtype II trichoid sensilla are involved in female-specific behaviors, such as oviposition. Chaetic and styloconic sensilla displayed relatively even distributions along the antennae. Our results indicate that the antennae of E. postvittana and P. octo have species-specific and sex-specific profiles of olfactory sensilla. The morphological information obtained in our study provides a basis for electrophysiological and behavioral studies of the olfactory sensory function of each morphological type of sensilla.
Keyword
AntennaMorphologyOlfactionScanning electron microscopySensillaTrichodea
ISSN
0968-4328
Publisher
Elsevier
Full Text Link
http://dx.doi.org/10.1016/j.micron.2017.12.006
Type
Article
Appears in Collections:
Division of Bio Technology Innovation > Core Research Facility & Analysis Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.