Structural study reveals the temperaturedependent conformational flexibility of Tk-PTP, a protein tyrosine phosphatase from Thermococcus kodakaraensis KOD1

Cited 10 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorHye-Yeoung Yun-
dc.contributor.authorJinhyuk Lee-
dc.contributor.authorH Kim-
dc.contributor.authorHyojung Ryu-
dc.contributor.authorHo-Chul Shin-
dc.contributor.authorB H Oh-
dc.contributor.authorBonsu Ku-
dc.contributor.authorSeung Jun Kim-
dc.date.accessioned2018-07-19T16:30:28Z-
dc.date.available2018-07-19T16:30:28Z-
dc.date.issued2018-
dc.identifier.issn1932-6203-
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/17889-
dc.description.abstractProtein tyrosine phosphatases (PTPs) originating from eukaryotes or bacteria have been under intensive structural and biochemical investigation, whereas archaeal PTP proteins have not been investigated extensively; therefore, they are poorly understood. Here, we present the crystal structures of Tk-PTP derived from the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1, in both the active and inactive forms. Tk-PTP adopts a common dual-specificity phosphatase (DUSP) fold, but it undergoes an atypical temperature-dependent conformational change in its P-loop and α4-α5 loop regions, switching between the inactive and active forms. Through comprehensive analyses of Tk-PTP, including additional structural determination of the G95A mutant form, enzymatic activity assays, and structural comparison with the other archaeal PTP, it was revealed that the presence of the GG motif in the P-loop is necessary but not sufficient for the structural flexibility of Tk-PTP. It was also proven that Tk-PTP contains dual general acid/base residues unlike most of the other DUSP proteins, and that both the residues are critical in its phosphatase activity. This work provides the basis for expanding our understanding of the previously uncharacterized PTP proteins from archaea, the third domain of living organisms.-
dc.publisherPublic Library of Science-
dc.titleStructural study reveals the temperaturedependent conformational flexibility of Tk-PTP, a protein tyrosine phosphatase from Thermococcus kodakaraensis KOD1-
dc.title.alternativeStructural study reveals the temperaturedependent conformational flexibility of Tk-PTP, a protein tyrosine phosphatase from Thermococcus kodakaraensis KOD1-
dc.typeArticle-
dc.citation.titlePLoS One-
dc.citation.number5-
dc.citation.endPagee0197635-
dc.citation.startPagee0197635-
dc.citation.volume13-
dc.contributor.affiliatedAuthorHye-Yeoung Yun-
dc.contributor.affiliatedAuthorJinhyuk Lee-
dc.contributor.affiliatedAuthorHyojung Ryu-
dc.contributor.affiliatedAuthorHo-Chul Shin-
dc.contributor.affiliatedAuthorBonsu Ku-
dc.contributor.affiliatedAuthorSeung Jun Kim-
dc.contributor.alternativeName윤혜영-
dc.contributor.alternativeName이진혁-
dc.contributor.alternativeName김현민-
dc.contributor.alternativeName유효정-
dc.contributor.alternativeName신호철-
dc.contributor.alternativeName오병하-
dc.contributor.alternativeName구본수-
dc.contributor.alternativeName김승준-
dc.identifier.bibliographicCitationPLoS One, vol. 13, no. 5, pp. e0197635-e0197635-
dc.identifier.doi10.1371/journal.pone.0197635-
dc.description.journalClassY-
Appears in Collections:
Synthetic Biology and Bioengineering Research Institute > Genome Editing Research Center > 1. Journal Articles
Critical Diseases Diagnostics Convergence Research Center > 1. Journal Articles
Division of A.I. & Biomedical Research > Orphan Disease Therapeutic Target Research Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.