Metallic nickel supported on mesoporous silica as catalyst for hydrodeoxygenation: effect of pore size and structure

Cited 18 time in scopus
Metadata Downloads
Title
Metallic nickel supported on mesoporous silica as catalyst for hydrodeoxygenation: effect of pore size and structure
Author(s)
M S Jang; T N Phan; Im Sik Chung; I G Lee; Y K Park; C H Ko
Bibliographic Citation
Research on Chemical Intermediates, vol. 44, no. 6, pp. 3723-3735
Publication Year
2018
Abstract
Catalytic hydrodeoxygenation (HDO) of anisole, a methoxy-rich lignin-derived bio-oil model compound, was carried out over a series of Ni-containing (5, 10, 20, and 30 wt%) catalysts with commercial silica and ordered mesoporous silica SBA-15 as support. Both supports and catalysts were characterized by N2 adsorption?desorption isotherms, X-ray diffraction, CO chemisorption, and transmission electron microscopy (TEM). Catalytic reaction was performed at 250 °C and 10 bar H2 pressure. Depending on the catalyst support used and the content of active metal, the catalytic activity and product distribution changed drastically. Increase of the nickel loading resulted in increased anisole conversion and C6 hydrocarbon (benzene and cyclohexane) yield. However, loading more Ni than 20 wt% resulted in a decrease of both conversion and C6 yield due to agglomeration of Ni particles. In addition, Ni/SBA-15 samples exhibited much stronger catalytic activity and selectivity toward C6 hydrocarbon products compared with Ni/silica catalysts. The differences in catalytic activity among these catalysts can be attributed to the effect of the pore size and pore structure of mesoporous SBA-15. SBA-15 can accommodate more Ni species inside channels than conventional silica due to its high pore volume with uniform pore structure, leading to high HDO catalytic activity
Keyword
AnisoleHydrodeoxygenationMesoporous silicaSBA-15Supported Ni catalysts
ISSN
0922-6168
Publisher
Springer
Full Text Link
http://dx.doi.org/10.1007/s11164-018-3377-1
Type
Article
Appears in Collections:
1. Journal Articles > Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.