Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway

Cited 75 time in scopus
Metadata Downloads
Title
Coordination of the leucine-sensing Rag GTPase cycle by leucyl-tRNA synthetase in the mTORC1 signaling pathway
Author(s)
M Lee; J H Kim; I Yoon; C Lee; M F Sichani; Jong Soon Kang; J Kang; M Guo; K Y Lee; G Han; S Kim; J M Han
Bibliographic Citation
Proceedings of National Academy of Sciences of United States of America, vol. 115, no. 23, pp. e5279-e5288
Publication Year
2018
Abstract
A protein synthesis enzyme, leucyl-tRNA synthetase (LRS), serves as a leucine sensor for the mechanistic target of rapamycin complex 1 (mTORC1), which is a central effector for protein synthesis, metabolism, autophagy, and cell growth. However, its significance in mTORC1 signaling and cancer growth and its functional relationship with other suggested leucine signal mediators are not well-understood. Here we show the kinetics of the Rag GTPase cycle during leucine signaling and that LRS serves as an initiating “ON” switch via GTP hydrolysis of RagD that drives the entire Rag GTPase cycle, whereas Sestrin2 functions as an “OFF” switch by controlling GTP hydrolysis of RagB in the Rag GTPase-mTORC1 axis. The LRS-RagD axis showed a positive correlation with mTORC1 activity in cancer tissues and cells. The GTP-GDP cycle of the RagD-RagB pair, rather than the RagC-RagA pair, is critical for leucine-induced mTORC1 activation. The active RagD-RagB pair can overcome the absence of the RagC-RagA pair, but the opposite is not the case. This work suggests that the GTPase cycle of RagD-RagB coordinated by LRS and Sestrin2 is critical for controlling mTORC1 activation, and thus will extend the current understanding of the amino acid-sensing mechanism
Keyword
GTPase-activating proteinLeucyl-tRNA synthetaseMTORC1Rag GTPaseSestrin2
ISSN
0027-8424
Publisher
Natl Acad Sciences
Full Text Link
http://dx.doi.org/10.1073/pnas.1801287115
Type
Article
Appears in Collections:
Ochang Branch Institute > Division of National Bio-Infrastructure > Laboratory Animal Resource & Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.