Impact of long-term RF-EMF on oxidative stress and neuroinflammation in aging brains of C57BL/6 mice

Cited 17 time in scopus
Metadata Downloads
Title
Impact of long-term RF-EMF on oxidative stress and neuroinflammation in aging brains of C57BL/6 mice
Author(s)
Y J Jeong; Yeonghoon Son; N K Han; H D Choi; J K Pack; N Kim; Y S Lee; H J Lee
Bibliographic Citation
International Journal of Molecular Sciences, vol. 19, no. 7, pp. 2103-2103
Publication Year
2018
Abstract
The expansion of mobile phone use has raised questions regarding the possible biological effects of radiofrequency electromagnetic field (RF-EMF) exposure on oxidative stress and brain inflammation. Despite accumulative exposure of humans to radiofrequency electromagnetic fields (RF-EMFs) from mobile phones, their long-term effects on oxidative stress and neuroinflammation in the aging brain have not been studied. In the present study, middle-aged C57BL/6 mice (aged 14 months) were exposed to 1950 MHz electromagnetic fields for 8 months (specific absorption rate (SAR) 5 W/kg, 2 h/day, 5 d/week). Compared with those in the young group, levels of protein (3-nitro-tyrosine) and lipid (4-hydroxy-2-nonenal) oxidative damage markers were significantly increased in the brains of aged mice. In addition, levels of markers for DNA damage (8-hydroxy-2'-deoxyguanosine, p53, p21, γH2AX, and Bax), apoptosis (cleaved caspase-3 and cleaved poly(ADP-ribose) polymerase 1 (PARP-1)), astrocyte (GFAP), and microglia (Iba-1) were significantly elevated in the brains of aged mice. However, long-term RF-EMF exposure did not change the levels of oxidative stress, DNA damage, apoptosis, astrocyte, or microglia markers in the aged mouse brains. Moreover, long-term RF-EMF exposure did not alter locomotor activity in aged mice. Therefore, these findings indicate that long-term exposure to RF-EMF did not influence age-induced oxidative stress or neuroinflammation in C57BL/6 mice.
Keyword
DNA damageRF-EMFaged brainneuroinflammationoxidative stress
ISSN
1422-0067
Publisher
MDPI
DOI
http://dx.doi.org/10.3390/ijms19072103
Type
Article
Appears in Collections:
Jeonbuk Branch Institute > Primate Resources Center > 1. Journal Articles
Files in This Item:

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.