Altered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models

Cited 193 time in scopus
Metadata Downloads

Full metadata record

DC FieldValueLanguage
dc.contributor.authorKyu-Sun Lee-
dc.contributor.authorS Huh-
dc.contributor.authorLee Seongsoo-
dc.contributor.authorZ Wu-
dc.contributor.authorAe-Kyeong Kim-
dc.contributor.authorH Y Kang-
dc.contributor.authorB Lu-
dc.date.accessioned2018-10-24T16:30:33Z-
dc.date.available2018-10-24T16:30:33Z-
dc.date.issued2018-
dc.identifier.issn0027-8424-
dc.identifier.uri10.1073/pnas.1721136115ko
dc.identifier.urihttps://oak.kribb.re.kr/handle/201005/18079-
dc.description.abstractCalcium (Ca2+) homeostasis is essential for neuronal function and survival. Altered Ca2+ homeostasis has been consistently observed in neurological diseases. How Ca2+ homeostasis is achieved in various cellular compartments of disease-relevant cell types is not well understood. Here we show in Drosophila Parkinson's disease (PD) models that Ca2+ transport from the endoplasmic reticulum (ER) to mitochondria through the ER-mitochondria contact site (ERMCS) critically regulates mitochondrial Ca2+ (mito-Ca2+) homeostasis in dopaminergic (DA) neurons, and that the PD-associated PINK1 protein modulates this process. In PINK1 mutant DA neurons, the ERMCS is strengthened and mito-Ca2+ level is elevated, resulting in mitochondrial enlargement and neuronal death. Miro, a well-characterized component of the mitochondrial trafficking machinery, mediates the effects of PINK1 on mito-Ca2+ and mitochondrial morphology, apparently in a transport-independent manner. Miro overexpression mimics PINK1 loss-of-function effect, whereas inhibition of Miro or components of the ERMCS, or pharmacological modulation of ERMCS function, rescued PINK1 mutant phenotypes. Mito-Ca2+ homeostasis is also altered in the LRRK2-G2019S model of PD and the PAR-1/MARK model of neurodegeneration, and genetic or pharmacological restoration of mito-Ca2+ level is beneficial in these models. Our results highlight the importance of mito-Ca2+ homeostasis maintained by Miro and the ERMCS to mitochondrial physiology and neuronal integrity. Targeting this mito-Ca2+ homeostasis pathway holds promise for a therapeutic strategy for neurodegenerative diseases.-
dc.publisherNatl Acad Sciences-
dc.titleAltered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models-
dc.title.alternativeAltered ER-mitochondria contact impacts mitochondria calcium homeostasis and contributes to neurodegeneration in vivo in disease models-
dc.typeArticle-
dc.citation.titleProceedings of National Academy of Sciences of United States of America-
dc.citation.number38-
dc.citation.endPagee8853-
dc.citation.startPagee8844-
dc.citation.volume115-
dc.contributor.affiliatedAuthorKyu-Sun Lee-
dc.contributor.affiliatedAuthorLee Seongsoo-
dc.contributor.affiliatedAuthorAe-Kyeong Kim-
dc.contributor.alternativeName이규선-
dc.contributor.alternativeName허성운-
dc.contributor.alternativeName이성수-
dc.contributor.alternativeNameWu-
dc.contributor.alternativeName김애경-
dc.contributor.alternativeName강하영-
dc.contributor.alternativeNameLu-
dc.identifier.bibliographicCitationProceedings of National Academy of Sciences of United States of America, vol. 115, no. 38, pp. e8844-e8853-
dc.identifier.doi10.1073/pnas.1721136115-
dc.subject.keywordERmitochondria contact site-
dc.subject.keywordMiro-
dc.subject.keywordPINK1-
dc.subject.keywordParkinson’s disease-
dc.subject.keywordcalcium homeostasis-
dc.subject.localERmitochondria contact site-
dc.subject.localMiro-
dc.subject.localPINK1-
dc.subject.localPink1-
dc.subject.localParkinson disease-
dc.subject.localParkinson's disease-
dc.subject.localParkinson’s Disease-
dc.subject.localParkinson’s disease-
dc.subject.localParkinson’s diseases-
dc.subject.localParkinsons disease (PD)-
dc.subject.localParkinsons disease-
dc.subject.localParkinson's diasease-
dc.subject.localParkinson's Disease-
dc.subject.localcalcium homeostasis-
dc.description.journalClassY-
Appears in Collections:
Division of Research on National Challenges > Bionanotechnology Research Center > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.


Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.