Changes in chemical properties of greenhouse soils collected from Gyeongnam province between 2000 and 2016

Cited 0 time in scopus
Metadata Downloads
Changes in chemical properties of greenhouse soils collected from Gyeongnam province between 2000 and 2016
H J Cho; D Son; S L Choi; Y H Lee; Jeongyeo Lee; J Y Heo
Bibliographic Citation
Korean Journal of Soil Science & Fertilizer, vol. 51, no. 3, pp. 265-273
Publication Year
Long-term monitoring of soil chemical properties is the main agricultural practices to improve crop yield and soil fertility. Field monitoring was performed to evaluate the chemical properties of 200 greenhouse soil samples every 4 years from 2000 to 2016 in Gyeongnam province, South Korea. Soil properties such as pH, electrical conductivity (EC), amount of organic matter (OM), available phosphate (P2O5), nitrate nitrogen (NO3-N), exchangeable potassium (K), calcium (Ca), magnesium (Mg), and sodium (Na) were analyzed. In 2016, the average concentration of soils under greenhouse condition showed 6.8 for pH, 3.52 dS m-1 for EC, 40 g kg-1 for OM, 1,065 mg kg-1 for P2O5, 154 mg kg-1 for NO3-N, 2.35 cmolc kg-1 for K, 12.8 cmolc kg-1 for Ca, 4.0 cmolc kg-1 for Mg, and 0.91 cmolc kg-1for Na. In addition, the average concentrations of OM, K, Ca, and Na have tended to increase with year. In 2016, the frequency distribution of excessive level of soils under greenhouse condition was 43% for pH, 61% for OM, 94% for P2O5, 89% for K, 96% for Ca, and 83% for Mg. Soil EC values of green pepper, tomato, and lettuce were significantly higher than those of carrot, strawberry, and squash (p < 0.05), whereas soil pH was significantly lower in the carrot and lettuce than that in the strawberry (p < 0.05). Soil pH was significantly correlated with the EC, NO3-N, K, Ca, Mg, and Na. The value of EC was also positively correlated with the OM, P2O5, NO3-N, K, Ca, Mg, and Na. In conclusion, the long-term information on soil chemical properties will be helpful to improve sustainable soil and nutrient management for greenhouse farming. Frequency distribution of chemical properties in greenhouse soils of Gyeongnam Province (n = 200).
Chemical propertyGreenhouse soilSoil fertilityLong-term monitoring
South Korea
Appears in Collections:
Division of Biomaterials Research > Plant Systems Engineering Research > 1. Journal Articles
Files in This Item:
  • There are no files associated with this item.

Items in OpenAccess@KRIBB are protected by copyright, with all rights reserved, unless otherwise indicated.